I think it's hard--(这题目有问题呀...)

Description

Xiao Ming is only seven years old, Now I give him some numbers, and ask him what is the second largest sum if he can choose a part of them. For example, if I give him 1 、 2 、 3 , then he should tell me 5 as 6 is the largest and 5 is the second. I think it is too hard for him, isn ’ t it?
Input

Standard input will contain multiple test cases. The first line of the input is a single integer T (1 <= T <=10) which is the number of test cases. And it will be followed by T consecutive test cases.
Each test case starts with a line containing an integer N (1<N<10) , the number I give Xiao Ming . The second line contains N Integer numbers ai (-10<ai<10),
Output

For each test case, output the answer.

Sample Input

2
3
1 2 3
4
0 1 2 3
Sample Output

5
5

题意:输入-10到10内的整数,求选中其中的数,构成和的次大值。
但我个人感觉这题有错(唯一解释就是可以一个都不选,但是,题目要求:choose a part of them…老天,为何折磨),先提供几组测试用例:
5
-9 -6 -5 -4 -4 按题意思应该输出-5,但AC答案是-4
5
-1 -1 -1 -1 -1 按题意思应该输出,但AC答案是-1

所以,总结出全为负数时,最大值为0,在减去一个这些数中绝对值最小的数即可。
如上面例子 0-4=-4 …

我个人代码(没AC的):

#include<cstdio>
#include<algorithm>
//#include<windows.h>
using namespace std;
int main()
{
    int T,n,i;
    int a[20],b[20];
    int sum,flag;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
		sum=0;
        for(int i=0; i<n; i++)
        {
            scanf("%d",&a[i]);
            b[i] = a[i];
        }
        sort(a,a+n);
        sort(b,b+n);
        for(i=0; i<n; i++)
        {
			//先计算存在正数的情况
            if(a[i]>0)
            {
				//如果正数不在最后一个位置
                if(i+1!=n)
                {
                    for(int j=i+1; j<n; j++)
                    {
                        sum+=b[j];
                        flag = 1; 
                    }
                }
				//正数在最后一个位置时
                else
                {
					//最小为零
                    if(b[0]==0)
                    {
                        sum=0;
                        flag=1;
                    }
                    else
                    {
						//有正有负的情况
                        for(int j=n-1; j>=0; j--)
                        {
                            if(b[j]<0 &&j!=n-1)
                            {
                                sum=b[n-1]+b[j];
                                flag=1;
                                break;
                            }
                        }
                    }
                }
                if(flag==1)
                    break;
            }
			//没有正数的情况
            if(a[n-1]<=0)
            {
				//全部为零的情况
                if(a[0]==0 && a[n-1]==0)
                {
                    sum=0;
                    break;
                }
				//不是全部为零,但非负数
                for(int j=n-1;j>=0;j--)
                {
					//全部为负数
                    if(b[n-1]<0)
                    {
                        for(int k=n-2;k>=0;k--)
                        {
                            if(b[k]<b[n-1])
                            {
								// -9 -6 -5 -4 -4   与-9 -6 -5 -1 -1
                                sum=max(b[k],b[n-1]+b[n-2]);
                                //printf("sum=%d** ",sum);
                                flag=1;
                                break;
 
                            }
							//全为负数且相同
                            if(b[0]==b[n-1])
                            {
                                sum=b[n-2]+b[n-1];
                                //printf("sum=%d** ",sum);
                                flag=1;
                                break;
 
                            }
                        }
 
                    }
                    if(flag==1)
                        break;
					//有零,即负数不在最后一位
                    if(b[j]<0 &&j!=n-1)
                    {
                        sum=b[j];
                        flag=1;
                        //printf("%d****",j);
                        break;
                    }
 
                }
                if(flag==1)
                    break;
            }
        }
        printf("%d\n",sum);
    }
    return 0;
}

AC代码(2种):

1.即上面的绝对值思想:

 
#include<stdio.h>
#include<math.h>
int main()
{
    int T;
    int n;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        int i,x;
        int min=10;
        int sum=0;
        for(i=0; i<n; i++)
        {
            scanf("%d",&x);
            if(x>0)
                sum+=x;
            if(fabs(x)<min&&x!=0)
                min=(int)fabs(x);
        }
        printf("%d\n",sum-min);
    }
    return 0;

}

2.暴力遍历(即每种情况的和算出来,先求最大,再求次大)

#include<stdio.h>
#include<algorithm>
using namespace std;
int main()
{
    int T,n;
    int a[20];
    int sum,sum1,sum2;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        for(int i=0; i<n; i++)
            scanf("%d",&a[i]);
        sort(a,a+n);
        sum1 = 0;
        sum=sum2=a[0];
        for(int i=0;i<n;i++)
        {
            for(int j=i;j<n;j++)
            {
                sum1=0;
                for(int k=i;k<=j;k++)
                {
                    //printf("%d--%d***\n",i,j);
                     sum1+=a[k];
                }


                //找到最大值
                sum=max(sum,sum1);
            }
        }
        for(int i=0;i<n;i++)
        {
            for(int j=i;j<n;j++)
            {
                sum1=0;
                for(int k=i;k<=j;k++)
                    sum1+=a[k];
                //即找到次大值
                if(sum1>sum2 &&sum1<sum)
                    sum2=sum1;
            }
        }
        printf("%d\n",sum2);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值