本地GPU调用失败问题解决2修改pytorch版本(失败)

本文讲述了如何在Anaconda中基于现有环境创建新环境,复制不同版本的PyTorch并处理CUDA兼容性问题,包括使用conda,pip3安装及源的配置,最终遇到的安装错误和解决方案预告。
摘要由CSDN通过智能技术生成

一、基于现有anaconda中的环境复制新环境

1、管理员打开anaconda

进入当前环境:

输入

conda env list

conda activate env_pytorch1121

2、复制当前环境为新环境

conda create --name env_pytorch2.2.0cu --clone env_pytorch1121

2)删除其中的pytorch、torchvision和torchaudio,我这里之前没装torchaudio,就少处理一个

如果有cpuonly,还要conda remove cpuonly

>conda remove pytorch torchvision

输入

y

完成

3、复制一个当前环境pytorch的版本,留着后边装其他版本的pytorch

conda create --name env_pytorch220cu --clone env_pytorch2.2.0cu

4、进入新环境

conda activate env_pytorch220cu

5、按官网命令,安装2.2.0 GPU版本

Previous PyTorch Versions | PyTorch

# CUDA 12.1
conda install pytorch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 pytorch-cuda=12.1 -c pytorch -c nvidia

嘿报错了

源的问题

6、参考更换源(效果失败)

参考添加源

输入:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

conda config --set show_channel_urls yes

显示源信息:

conda info 

失败

7、参考官网另一种命令

Start Locally | PyTorch
输入:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

还是报错

准备anaconda中重新安装环境

8、安装新的版本,这里准备尝试分别安装最新版pytorch2.2.0和1.12.1(支持cuda11.6)

具体内容见下篇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值