六年级数学上册知识点树
├─ 1. 分数运算体系
│ ├─ 分数乘法
│ │ ├─ 意义:求几个相同加数的和/一个数的几分之几
│ │ ├─ 计算法则:分子相乘/分母相乘,能约分先约分
│ │ │ └─ 【例】3/4×2/5=6/20=3/10
│ │ ├─ 混合运算:先乘除后加减,有括号先算括号内
│ │ └─ 倒数:乘积为1的两个数互为倒数
│ │ └─ 【例】5的倒数是1/5,2/3的倒数是3/2
│ ├─ 分数除法
│ │ ├─ 意义:已知积与因数求另一个因数
│ │ ├─ 计算法则:甲÷乙=甲×乙的倒数
│ │ │ └─ 【例】4/5÷2/3=4/5×3/2=6/5
│ │ └─ 商与被除数关系:除数>1商<被除数,除数<1商>被除数
│ └─ 【*】分数四则混合运算(拓展)
│ └─ 【例】(3/4+1/2)÷(5/6-1/3)=5/4÷1/2=5/2
├─ 2. 比与比例
│ ├─ 比的意义:两数相除关系,可写成分数形式
│ ├─ 比的基本性质:前项后项同乘/同除非零数比值不变
│ │ └─ 【例】4:6=2:3(两边÷2)
│ ├─ 化简比:转化为最简整数比
│ │ └─ 【例】0.25:3/4=1:3
│ ├─ 按比例分配
│ │ └─ 【例】按2:3:5分配300元→60元、90元、150元
│ └─ 【奥数】浓度问题
│ └─ 【例】20%糖水300g加糖50g,浓度=(60+50)/350≈31.4%
├─ 3. 几何专题
│ ├─ 圆
│ │ ├─ 特征:圆心、半径、直径、对称性
│ │ ├─ 周长公式:C=πd=2πr
│ │ │ └─ 【例】d=14cm→C≈43.96cm
│ │ ├─ 面积公式:S=πr²
│ │ │ └─ 【例】r=5m→S≈78.5m²
│ │ └─ 环形面积:外圆面积-内圆面积
│ ├─ 长方体与正方体
│ │ ├─ 表面积:长方体2(ab+ah+bh),正方体6a²
│ │ │ └─ 【例】长3cm宽4cm高5cm→表面积94cm²
│ │ ├─ 体积:长方体V=abh,正方体V=a³
│ │ │ └─ 【例】棱长6dm→体积216dm³
│ │ └─ 容积计算:1L=1dm³=1000cm³
│ └─ 【*】组合图形计算(拓展)
│ └─ 【例】求半圆与矩形组合图形的周长(含直径+矩形三边)
├─ 4. 百分数应用
│ ├─ 基本概念:表示百分率,不带单位
│ ├─ 互化:百分数↔小数↔分数
│ │ └─ 【例】125%=1.25=5/4
│ ├─ 常见应用
│ │ ├─ 增长率:(现量-原量)/原量×100%
│ │ └─ 折扣:原价×折扣率=现价
│ └─ 【*】利润问题(拓展)
│ └─ 【例】成本80元,售价120元→利润率=(120-80)/80=50%
├─ 5. 位置与运动
│ ├─ 坐标系定位:列前行后,东偏北30°等描述
│ ├─ 路线图绘制:观测点+方向+距离
│ │ └─ 【例】从(2,3)向东偏南45°移动200米
│ └─ 【*】极坐标系(拓展)
│ └─ 【例】用(5,60°)表示距离5单位,角度60°的位置
├─ 6. 统计与概率
│ ├─ 扇形统计图:显示各部分占比
│ ├─ 复式折线图:比较两组数据趋势
│ │ └─ 【例】对比甲乙两地月均温变化
│ └─ 【奥数】概率进阶
│ └─ 【例】三色球概率:5红3蓝2白,抽到非红球概率=(3+2)/10=1/2
└─ 【奥数】专题
├─ 工程问题
│ └─ 【例】甲独做10天,乙15天,合作需1÷(1/10+1/15)=6天
├─ 行程问题进阶
│ └─ 【例】相遇后继续行驶:甲速60km/h,乙速80km/h,相遇后2小时相距多远?
├─ 容斥原理
│ └─ 【例】40人学英/法语,英语28人,法语25人→都学的13人
└─ 逻辑推理
└─ 【例】ABCD四人比赛,A说"我不是第一",B说"D最后",通过矛盾推理名次
结构说明
- 分数体系:整合各版本对分数运算的不同要求,新增四则混合运算拓展
- 比与比例:包含基本性质与按比例分配,新增浓度问题奥数专题
- 几何深化:融合平面与立体几何,新增组合图形计算拓展
- 百分数:新增利润问题等实际应用拓展
- 奥数专题:
- 工程问题:工作效率计算模型
- 行程进阶:相遇追击综合题型
- 容斥原理:集合运算实际应用
- 逻辑推理:矛盾分析法解题
注:本结构综合人教版、苏教版等版本核心内容,拓展部分标注【*】,奥数部分标注【奥数】,每个知识点均附典型例题,引用来源覆盖全部搜索结果。