Hyrax: Doubly-efficient zkSNARKs without trusted setup学习笔记

1. 引言

Wahby等人2018年论文《Doubly-efficient zkSNARKs without trusted setup》。
代码实现参见:
https://github.com/hyraxZK
视频解说参见:
https://www.youtube.com/watch?v=ScY9Z5tZZKU
https://www.youtube.com/watch?v=yq2AfLlMww0

论文要点:

  • 基于standard cryptographic assumption,无需trusted setup,对Prover和Verifier均具有low communication complexity和low concrete cost的zkSNARKs for NP。
  • Communication为 Θ ( d ⋅ log ⁡ G + n w ) \Theta(d\cdot \log G+\sqrt{n_w}) Θ(dlogG+nw ),其中 d , G d,G d,G分别为verifying circuit的depth和width, w n w_n wn为witness size。
  • 当用于batched statements或者data-parallel statements时,Prover的runtime为linear in the verifying circuit size,Verifier的runtime为sub-linear in the verifying circuit size。两者均具有good constants。
  • 通过使用a new commitment scheme for multilinear polynomials,witness-related communication可reduced,但verifier time会增加。
  • 需要在setup、complexity assumptions、proof size和computational cost之间进行取舍平衡。
  • 基于discrete log assumption,采用Fiat-Shamir heuristic 实现了zkSNARK in the random oracle model,本文称之为Hyrax。
  • 将Hyrax与5种系统(BCCGP-sqrt, Bulletproofs, Ligero, ZKB++和libSTARK)进行了对比。对于modest problem sizes,Hyrax具有smaller proofs,most computationally costly baseline,prover和verifier速度快于5种系统中的3种。

其中5种方案分别为:

  • BCCGP-sqrt:来源于Bootle等人2016年论文《Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting》。(在Groth [57] 和 Bayer and Groth [6] 的基础上,基于hardness of discrete logarithm,提供了2种ZK argument for Arithmetic Circuit C C C’s satisfiability。第一种proof size为 O ( M ) O(\sqrt{M}) O(M ),具有quasi-linear prover and verifier runtime for an AC with M M M multiplications;第二种proof size为 O ( log ⁡ M ) O(\log M) O(logM) at the cost of concretely longer prover and verifier runtimes。)
  • Bulletproofs:来源于Bünz等人2018年论文《Bulletproofs: Efficient range proofs for confidential transactions》。(在BCCGP-sqrt的基础上进行改进,reduce proof size and runtimes in the log scheme ≈ 3 × \approx 3\times 3×
  • Ligero:来源于Ames等人2017年论文《Ligero: Lightweight sublinear arguments without a trusted setup》。(在ZKB++的基础上,使用了更成熟的secure computation protocol,可prove an Arithmetic Circuit C C C’s satisfiability with proof size O ( ∣ C ∣ ) O(\sqrt{|C|}) O(C ),prover和verifier work为quasi-linear in ∣ C ∣ |C| C。)
  • ZKB++:来源于Chase等人2017年论文《Post-quantum zero-knowledge and signatures from symmetric-key primitives》。(将a secure multi-party computation protocol into a ZK argument,为a ZK argument system for Boolean circuits with no trusted setup from collision-resistant hashes。concretely inexpensive for small circuits,但是costs scale linearly with circuit size。)
  • libSTARK:来源于Ben-Sasson等人2018年论文《Scalable, transparent, and post-quantum secure computational integrity》。(zkSTARKs不需要trusted setup,no public-key cryptography,但是其soundness 基于non-standard conjecture related to Reed-Solomon codes。Both proof size and verifier runtime are logarithmic in circuit size (hundreds of kilobytes and tens of milliseconds, respectively, in practice), and prover runtime is quasi-linear。)

1.1 zero-knowledge proof

A zero-knowledge proof用于convince a verifier of a statement while revealing nothing but its own validity。

  • zero-knowledge proof概念由Goldwasser等人在1989年论文《The knowledge complexity of interactive proof systems》中首次提出。

  • Ben-Or等人1990年论文《Everything provable is provable in zero-knowledge》中指出:
    any problem solvable by an interactive proof (IP) is also solvable by a computational zero-knowledge proof or pefect zero-knowledge argument。
    也就是说,given an interactive proof for any NP-complete problem, one can construct zero-knowledge proofs or arguments for any NP statement。

1.2 本文算法性能表现

本文主要关注的点有:

  • proof应为succinct,sub-linear in the size of the statement and the witness to the statement’s validity;
  • verifier应run in time linear in input plus proof size;
  • prover,given a witness to the statement’s validity,应run in time linear in the cost of the NP verification procedure;
  • 整个scheme应既不需要trusted setup,也不需要common reference string;
  • soundness and zero-knowledge应为statistical或者基于standard cryptographic assumptions。实际上,security in the random oracle model就足够。

本文主要做了以下两方面的改进:

  • 1)在verification procedure中整合了multi-commitment scheme和Schnorr-style proof。
  • 2)设计了一种新的witness commitment scheme,可产生a succinct argument and asymptotically reducing the verifier’s cost associated with the witness。

具体的性能表现为:
在这里插入图片描述

1.3 Polynomial commitment scheme

1.4 一些定义

在这里插入图片描述

  • Arithmetic circuit (AC) C C C
    由加法门和乘法门组成,每个门最多由2个输入fan-in,所有计算基于finite field F \mathbb{F} F C C C为分层设计,具有depth d d d,input x ⃗ \vec{x} x with length ∣ x ∣ |x| x
    目的是evaluate C C C on input x ⃗ \vec{x} x 。在interactive proof or argument中,prover发送 y y y,声称 y = C ( x ⃗ ) y=C(\vec{x}) y=C(x )并提供相应的证明。
    本文的目的是为这种arithmetic circuit satisfiability problem提供efficient protocol。
    Let C ( ⋅ , ⋅ ) C(\cdot,\cdot) C(,)为layered arithmetic circuit of fan-in two。已知输入 x ⃗ \vec{x} x 和输出 y y y,目的是确认是否存在 witness w ⃗ \vec{w} w ,使得 C ( x ⃗ , w ⃗ ) = y C(\vec{x},\vec{w})=y C(x ,w )=y 成立。相应的witness relation可表示为: R ( x ⃗ , y ) = { w ⃗ : C ( x ⃗ , w ⃗ ) = y } R_(\vec{x},y)=\{\vec{w}:C(\vec{x},\vec{w})=y\} R(x ,y)={w :C(x ,w )=y}

  • Interactive arguments and proofs:
    在这里插入图片描述

  • Zero-knowledge (ZK):
    在这里插入图片描述

  • Witness-extended emulation:
    在这里插入图片描述
    在这里插入图片描述

  • Generalized special soundness:
    在这里插入图片描述

  • Collection of non-interactive commitment:
    在这里插入图片描述

  • Additive homomorphism加法同态属性:
    在这里插入图片描述

2. Arithmetic circuit evaluation problem

主要的研究有:(Arithmetic circuit C C C with depth d d d, input x x x, output y y y。)

  • 【54】Goldwasser等人2015年论文《Delegating computation: Interactive proofs for muggles》中主要针对boolean circuit with depth d d d and input length n n n。其Verifier runs in time n ⋅ p o l y ( d , log ⁡ ( n ) ) n\cdot poly(d,\log(n)) npoly(d,log(n)) and space O ( log ⁡ ( n ) ) O(\log(n)) O(log(n)),communication complexity为 p o l y ( d , log ⁡ ( n ) ) poly(d,\log(n)) poly(d,log(n)),Prover runs in time p o l y ( n ) poly(n) poly(n)
  • 【37】【107】Cormode等人2012年论文《Practical verified computation with streaming interactive proofs》、Vu等人2013年论文《A hybrid architecture for interactive verifiable computation》中在【54】的基础上进行了改进,giving O ( ∣ C ∣ log ⁡ ∣ C ∣ ) O(|C|\log|C|) O(ClogC) prover and O ( ∣ x ∣ + ∣ y ∣ + d log ⁡ ∣ C ∣ ) O(|x|+|y|+d\log|C|) O(x+y+dlogC) verifier runtimes, for AC C C C with depth d d d, input x x x, and output y y y
  • 【102】Thaler 2013年论文《Time-optimal interactive proofs for circuit evaluation》,针对 C C C 为data parallel,即包含 N N N个相同的sub-computations run on different inputs,可称其为sub-AC of C C C(sub-AC的width为 G G G,有 ∣ C ∣ = d ⋅ N ⋅ G |C|=d\cdot N\cdot G C=dNG),可进一步优化,将Prover runtimet由 O ( ∣ C ∣ log ⁡ ∣ C ∣ ) O(|C|\log|C|) O(ClogC)降为 O ( ∣ C ∣ log ⁡ G ) O(|C|\log G) O(ClogG)
  • 【109】Wahby等人2017年论文《 Full accounting for verifiable outsourcing》中介绍了Giraffe算法,可将Prover runtime降为 O ( ∣ C ∣ + d ⋅ G ⋅ log ⁡ G ) O(|C|+d\cdot G\cdot \log G) O(C+dGlogG),由于 ∣ C ∣ = d ⋅ N ⋅ G |C|=d\cdot N\cdot G C=dNG,当 N ≥ log ⁡ G N\geq \log G NlogG时,Prover runtime可进一步降为 O ( ∣ C ∣ ) O(|C|) O(C)。即for sufficient data parallelism, the prover’s runtime is just a constant factor slower than evaluating the circuit gate-by-gate without providing any proof of correctness。
  • 【35】Chiesa等人2017年论文《A zero knowledge sumcheck and its applications》在Giraffe算法的基础上进行了优化,称为Gir++算法。
  • 本文在Gir++算法的基础上进行了简单调整。假设 N , G N,G N,G均为powers of 2,设置 b N = log ⁡ 2 N , b G = log ⁡ 2 G b_N=\log_2N,b_G=\log_2G bN=log2N,bG=log2G。在 C C C的每一层,每个gate都标记为 a pair ( i , j ) ∈ { 0 , 1 } b N × { 0 , 1 } b G (i,j)\in\{0,1\}^{b_N}\times\{0,1\}^{b_G} (i,j){0,1}bN×{0,1}bG C C C的每层序号标记为 0 0 0 d d d,实际执行时是从 d d d 0 0 0,即 0 0 0对应为output层, d d d对应为input层。每层 i i i对应有一个evaluator function V i : { 0 , 1 } b N × { 0 , 1 } b G → F V_i:\{0,1\}^{b_N}\times\{0,1\}^{b_G}\rightarrow \mathbb{F} Vi:{0,1}bN×{0,1}bGF 用于map a gate’s label to the output of that gate when C C C is evaluated on input x x x。比如, V 0 ( i , j ) V_0(i,j) V0(i,j) j j j-th output of the i i i-th sub-AC, V d ( i , j ) V_d(i,j) Vd(i,j)为为 j j j-th input to the i i i-th sub-AC。
    从更宏观层面看,在circuit的每一层,protocol都是以迭代方式运行:
  • Prover发送声称的outputs y ⃗ \vec{y} y of C C C(如 all the claimed evaluations of V 0 V_0 V0);
  • 第一次迭代:reduce the claim about V 0 V_0 V0 to a claim about V 1 V_1 V1(若Verifier 信任 the former claim,则也信任 the latter。但是Verifier 无法直接验证 the claim about V 1 V_1 V1,因为验证过程中所有evaluating all of the gates in C C C other than the outputs themselves。);
  • 第二次迭代:reduce the claim about V 1 V_1 V1 to a claim about V 2 V_2 V2
  • ⋯ \cdots
  • 以此类推,直到reduce to a claim about V d V_d Vd (此时即为inputs to C C C),此时Verifier可直接check。

为了更好的描述how a reduction from a claim about V i V_i Vi to a claim about V i + 1 V_{i+1} Vi+1 is performed,引入了multilinear extensions,the sum-check protocol和wiring predicates概念。

  • Multilinear extensions定义:
    a function f : { 0 , 1 } l → F f:\{0,1\}^l\rightarrow \mathbb{F} f:{0,1}lF 为具有 l l l 个变量的多项式,若对于所有的 x ⃗ ∈ { 0 , 1 } l \vec{x}\in\{0,1\}^l x {0,1}l都有 g ( x ⃗ ) = f ( x ⃗ ) g(\vec{x})=f(\vec{x}) g(x )=f(x )每个变量 x i x_i xi的取值仅能为0或1】,则 g g g可称为an extension of f f f。任意这样的function f f f,都有唯一的multilinear extension (MLE)——a multilinear polynomial——表示为 f ~ \tilde{f} f~
    任意的vector z ⃗ ∈ F m \vec{z}\in\mathbb{F}^m z Fm,其中 m = 2 l m=2^l m=2l,可将该向量理解为a function z : { 0 , 1 } l → F z:\{0,1\}^l\rightarrow\mathbb{F} z:{0,1}lF 用于mapping indices to vector entries(其实就是每个变量 x i x_i xi的取值仅能为0或1,所有 x 1 , ⋯   , x l x_1,\cdots,x_l x1,,xl的组合有 2 l 2^l 2l个,对应的多项式值即为 2 l 2^l 2l),使用 z ~ \tilde{z} z~来表示 z z z的MLE。

  • sum-check protocol定义:
    Lund等人1992年论文《Algebraic methods for interactive proof systems》中描述的sum-check interactive proof为:
    在这里插入图片描述
    Goldwasser等人2015年论文《Delegating computation: Interactive proofs for muggles》中描述的interactive sum-check protocol为:
    在这里插入图片描述
    在这里插入图片描述
    g g g为有限域 F \mathbb{F} F内,具有 l l l 个变量的多项式 , d e g i ( g ) deg_i(g) degi(g)表示the degree of g g g in variable i i i。The sum-check protocol is an interactive proof that allows P P P to convince V V V of a claim about the value of ∑ x ⃗ ∈ { 0 , 1 } l g ( x ⃗ ) \sum_{\vec{x}\in\{0,1\}^l}g(\vec{x}) x {0,1}lg(x ) by reducing it to a claim about the value of g ( r ⃗ ) g(\vec{r}) g(r ),其中 r ⃗ ∈ F l \vec{r}\in\mathbb{F}^l r Fl are randomly chosen by V V V。存在 l l l rounds,且 V V V的run time 为 O ( ∑ i = 1 l d e g i ( g ) ) O(\sum_{i=1}^{l}deg_i(g)) O(i=1ldegi(g)) + the cost of evaluating g ( r ⃗ ) g(\vec{r}) g(r )

  • Wiring predicates:
    用于capture the wiring information of the sub-ACs。
    定义wiring predicate a d d i : { 0 , 1 } 3 b G ← { 0 , 1 } add_i:\{0,1\}^{3b_G}\leftarrow\{0,1\} addi:{0,1}3bG{0,1},其中 a d d i ( g , h 0 , h 1 ) add_i(g,h_0,h_1) addi(g,h0,h1)返回1值,若:
    – a) within each sub-AC, gate g g g at layer i − 1 i-1 i1 is an add gate;
    – b) and the left and right inputs of g g g are respectively h 0 h_0 h0 and h 1 h_1 h1 at layer i i i
    否则输出0值。
    m u l t i mult_i multi对乘法门的定义类似。
    定义equality predicate e q : { 0 , 1 } 2 b N ← { 0 , 1 } eq:\{0,1\}^{2b_N}\leftarrow\{0,1\} eq:{0,1}2bN{0,1} e q ( a , b ) = 1 eq(a,b)=1 eq(a,b)=1 iff a = b a=b a=b
    在这里插入图片描述

3. Pedersen commitment相关

3.1 Pedersen commitment scheme定义

在这里插入图片描述
Pedersen commitment scheme 为a non-interactive commitment scheme assuming the hardness of the discrete logarithm problem in G \mathcal{G} G

3.2 proof of opening

在这里插入图片描述

3.3 proof of commitment to the same value

在这里插入图片描述
注意,博客 基于Sigma protocol实现的零知识证明protocol集锦 2.6节的Protocol 6. Equality of message in 2 Pedersen commitment 证明方法则略有不同 (此处的proof size更精简)
在这里插入图片描述

3.4 proof of product

在这里插入图片描述
在这里插入图片描述

4. Dot-prodcut proof protocol

基本内容为:

  • public info: a ⃗ = ( a 1 , ⋯   , a n ) ∈ F n \vec{a}=(a_1,\cdots,a_n)\in\mathbb{F}^n a =(a1,,an)Fn、multi-commitment ξ = C o m ( x ⃗ ; r ξ ) \xi=Com(\vec{x};r_{\xi}) ξ=Com(x ;rξ)和scalar commitment τ = C o m ( y ; r τ ) \tau=Com(y;r_{\tau}) τ=Com(y;rτ)
  • private info: x ⃗ = ( x 1 , ⋯   , x n ) ∈ F n \vec{x}=(x_1,\cdots,x_n)\in\mathbb{F}^n x =(x1,,xn)Fn y ∈ F y\in\mathbb{F} yF r ξ r_{\xi} rξ r τ r_{\tau} rτ
  • relation: y = < a ⃗ , x ⃗ > y=<\vec{a},\vec{x}> y=<a ,x >

证明的基础为:
< z ⃗ , a ⃗ > = < c x ⃗ + d ⃗ , a ⃗ > = c < x ⃗ , a ⃗ > + < d ⃗ , a ⃗ > = c y + < d ⃗ , a ⃗ > <\vec{z},\vec{a}>=<c\vec{x}+\vec{d},\vec{a}>=c<\vec{x},\vec{a}>+<\vec{d},\vec{a}>=cy+<\vec{d},\vec{a}> <z ,a >=<cx +d ,a >=c<x ,a >+<d ,a >=cy+<d ,a >

4.1 ZK vector dot-product proof

直观的证明过程如下,需要的proof size为 O ( n ) 。 O(n)。 O(n)
详细的证明思路为:
在这里插入图片描述
在这里插入图片描述

4.2 dot-product proof with Bulletproofs

2018年论文《Bulletproofs: Short Proofs for Confidential Transactions and More》中针对的场景为:【未引入随机值 r ξ r_{\xi} rξ来对commitment进行hiding操作。】

  • public info: commitment P = g ⃗ a ⃗ h ⃗ b ⃗ P=\vec{g}^{\vec{a}}\vec{h}^{\vec{b}} P=g a h b c ∈ F c\in\mathbb{F} cF 和 generators g , h g,h g,h
  • private info: a ⃗ = ( a 1 , ⋯   , a n ) ∈ F n \vec{a}=(a_1,\cdots,a_n)\in\mathbb{F}^n a =(a1,,an)Fn b ⃗ = ( b 1 , ⋯   , b n ) ∈ F n \vec{b}=(b_1,\cdots,b_n)\in\mathbb{F}^n b =(b1,,bn)Fn
  • relation: c = < a ⃗ , b ⃗ > c=<\vec{a},\vec{b}> c=<a ,b >
    在这里插入图片描述

如博客 Proofs for Inner Pairing Products and Applications 学习笔记 4.2节所述,Bulletproofs论文中构建的commitment scheme为 C M ( ( g ⃗ , h ⃗ ) ; ( a ⃗ , b ⃗ ) ) = g ⃗ a ⃗ h ⃗ b ⃗ u < a ⃗ , b ⃗ > CM((\vec{g},\vec{h});(\vec{a},\vec{b}))=\vec{g}^{\vec{a}}\vec{h}^{\vec{b}}u^{<\vec{a},\vec{b}>} CM((g ,h );(a ,b ))=g a h b u<a ,b >,再对该scheme采用二分法利用迭代进行证明。

本文针对的场景为:【引入了随机值 r ξ 、 r τ r_{\xi}、r_{\tau} rξrτ来对commitment进行hiding操作。】

  • public info: a ⃗ = ( a 1 , ⋯   , a n ) ∈ F n \vec{a}=(a_1,\cdots,a_n)\in\mathbb{F}^n a =(a1,,an)Fn、multi-commitment ξ = C o m ( x ⃗ ; r ξ ) \xi=Com(\vec{x};r_{\xi}) ξ=Com(x ;rξ)和scalar commitment τ = C o m ( y ; r τ ) \tau=Com(y;r_{\tau}) τ=Com(y;rτ)
  • private info: x ⃗ = ( x 1 , ⋯   , x n ) ∈ F n \vec{x}=(x_1,\cdots,x_n)\in\mathbb{F}^n x =(x1,,xn)Fn y ∈ F y\in\mathbb{F} yF r ξ r_{\xi} rξ r τ r_{\tau} rτ
  • relation: y = < a ⃗ , x ⃗ > y=<\vec{a},\vec{x}> y=<a ,x >

注意:根据博客 Halo: Recursive Proof Composition without a Trusted Setup 学习笔记 第3节“Polynomial commitments”指出的, p r o o f l o g − o f − d o t − p r o d proof_{log}-of-dot-prod prooflogofdotprod的实现存在Prover作弊的情况。需要将 b u l l e t − r e d u c e bullet-reduce bulletreduce算法中的 g g g改为 g = g α g=g^{\alpha} g=gα,以及做如下调整:(与Bulletproofs中的Protocol 1类似)
– Verifier:收到commitment ξ = C o m ( x ⃗ ; r ξ ) , τ = C o m ( y ; r τ ) \xi=Com(\vec{x};r_{\xi}),\tau=Com(y;r_{\tau}) ξ=Com(x ;rξ),τ=Com(y;rτ)
– Verifier:random challenge α ← Z q G \alpha\leftarrow\mathbb{Z}_{q \mathcal{G}} αZqG,将 α ← Z q G \alpha\leftarrow\mathbb{Z}_{q \mathcal{G}} αZqG发送给Prover。
– Prover和Verifer:计算 g = g α g=g^{\alpha} g=gα, Υ ’ = ξ ⊙ τ α = h r Υ ⊙ g y ⊙ ⨀ i = 1 n g i x i \Upsilon’=\xi\odot \tau^{\alpha}=h^{r_{\Upsilon}}\odot g^y\odot \bigodot_{i=1}^ng_i^{x_i} Υ=ξτα=hrΥgyi=1ngixi,其中 r Υ = α r τ + r ξ r_{\Upsilon}=\alpha r_{\tau}+r_{\xi} rΥ=αrτ+rξ
– 调用bullet-reduce。。。


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 基于Giraffe和Gir++算法构建的Arithmetic circuit zk argument 算法

待补充。。。
主要基于Wahby等人2017年论文《Full accounting for verifiable outsourcing》和 Chiesa等人2017年论文《A zero knowledge sumcheck and its applications》。

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值