qesa Efficient zero-knowledge arguments in the discrete log setting 学习笔记

1. 引言

Hoffmann等人 2019年论文 《Efficient zero-knowledge arguments in the discrete log setting 》。

相应的代码实现可参见:

  • https://github.com/crate-crypto/qesa
  • https://github.com/emsec/QESA_ZK

总结:
1) 将Bulletproofs中的vector-vector multiplication扩展至了matrix-vector multiplication argument,构建的zero-knowledge argument有:
L M P A s i m p l e Z K LMPA_{simpleZK} LMPAsimpleZK 协议:简单的 ∑ s t d \sum_{std} std 协议和 L M P A n o Z K LMPA_{noZK} LMPAnoZK 协议组合。
L M P A Z K LMPA_{ZK} LMPAZK 协议:区别于Bulletproofs中引入random row vector来实现hiding,本文是通过引入random column vector来实现hiding。(且random column vector 可直接从 random matrix [ h ] [\mathbf{h}] [h] 中逐列获取。)
2) 提出了三种inner product protocol:
I P A n o Z K IPA_{noZK} IPAnoZK 协议:实现方式与Bulletproofs类似,无zero-knowledge属性;
I P A a l m Z K IPA_{almZK} IPAalmZK 协议:借助kernel guideline来引入特定的随机变量 r ⃗ ′ , r ⃗ ′ ′ \vec{r}',\vec{r}'' r ,r 来实现hiding,从而实现zero-knowledge;
Q E S A I n n e r QESA_{Inner} QESAInner 协议:通过random linear combination (通过 x ⃗ \vec{x} x s ⃗ ′ \vec{s}' s ),将多个matrix-vector multiplication转换为 I P A a l m Z K IPA_{almZK} IPAalmZK
3)构建了2种 Q E S A QESA QESA协议:
Q E S A z k QESA_{zk} QESAzk 协议: Q E S A I n n e r QESA_{Inner} QESAInner 协议的封装。
Q E S A C o p y QESA_{Copy} QESACopy 协议:可用于构建各种circuit argument。
4)提出了将R1CS转换为quadratic equation表示:(从而可基于inner product argument来进行相应证明,参见本博文5.2)
R1CS的表示为: ( w ⃗ T a ⃗ ) ( b ⃗ T w ⃗ ) − c ⃗ T w ⃗ = 0 (\vec{w}^T\vec{a})(\vec{b}^T\vec{w})-\vec{c}^T\vec{w}=0 (w Ta )(b Tw )c Tw =0,其中 a ⃗ , b ⃗ , c ⃗ ∈ F p n \vec{a},\vec{b},\vec{c}\in\mathbb{F}_p^n a ,b ,c Fpn
设置 Γ = a ⃗ b ⃗ T − e ⃗ 1 c ⃗ T \mathbf{\Gamma}=\vec{a}\vec{b}^T-\vec{e}_1\vec{c}^T Γ=a b Te 1c T,其中 e ⃗ 1 = ( 1 , 0 , 0 , ⋯   , 0 ) \vec{e}_1=(1,0,0,\cdots,0) e 1=(1,0,0,,0)
可将上述R1CS表示转为quadratic equation表示:
w ⃗ T Γ w ⃗ = 0 \vec{w}^T\mathbf{\Gamma}\vec{w}=0 w TΓw =0


本文主要关注zero-knowledge proofs in the discrete logarithm setting:

  • 指出可通过protocols的linear combination来实现zero-knowledge 和(或) 减少communication。利用这些linear combination of protocols技术,可设计出具有logarithmic communication cost的zero-knowledge argument(如Bootle等人2016年论文《Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting》和Bünz 等人2018年论文《Bulletproofs: Short Proofs for Confidential Transactions and More》 中的zero-knowledge argument的communication cost为 O ( log ⁡ ( n ) ) O(\log (n)) O(log(n)))。
  • 构建了一个理论上简单的commit-and-prove argument for satisfiability of a set of quadratic equations。与之前的研究不同,本文不受限于rank 1 constraint systems (R1CS)。这是第一次不依赖于R1CS来表示quadratic constraints in dlg setting or ideal linear commitment。
    可以进一步优化,如对任意degree为 n 2 n^2 n2的polynomial f ( X ) f(X) f(X),可 “evaluated” with at most 2 n 2n 2n quadratic constraints。
  • 同时,本文形成了一个 short-circuit extraction,可用于对extractor的效率进行量化测量。

在这里插入图片描述
在这里插入图片描述

1.1 相关研究

第一个实用的succinct non-interactive arguments of knowledge (SNARK) 为:
Gennaro等人2013年论文《Quadratic Span Programs and Succinct NIZKs without PCPs》。

之后关于ZKAoK(zero-knowledge arguments of knowledge)的研究成果有:[2, 8, 13, 17, 21, 24, 25, 26, 46]

本文,主要关注在groups of prime order setting下的研究成果:[13, 16, 28]

以上[13, 16, 28]论文中实现的ILC-argument,仅natively 支持 R1CS language,本文在不依赖于R1CS情况下实现了对 systems of quadratic equations的处理。

同时,如果借助Groth等人在2019年Security Track Proceeding中发布的《ZKProof Community Reference》技术文档,本文的工作成果可归结为ideal linear commitments (ILC)。
本文的Verifier允许 do “matrix-vector queries” on a committed value w ⃗ \vec{w} w ,如 request an opening for a matrix-vector product Γ w ⃗ \mathbf{\Gamma}\vec{w} Γw 。由此可知,具有比只支持point queries或inner-product queries的PCP或IOP更强的功能。
在这里插入图片描述
除此之后,本文还提供了对prove knowledge of preimage of group homomorphisms。如证明 knowledge of the decryption of an EIGamal ciphertext。这种不属于ILC范畴。

根据Groth等人在2019年Security Track Proceeding中发布的《ZKProof Community Reference》技术文档中的相关内容进行梳理:

1.2 基本技术

基本信息为:

  • public info: [ A ] ∈ G m × n , [ t ] ∈ G m × 1 [\mathbf{A}]\in\mathbb{G}^{m\times n},[\mathbf{t}]\in\mathbb{G}^{m\times 1} [A]Gm×n,[t]Gm×1
  • witness: w ⃗ ∈ F p n \vec{w}\in\mathbb{F}_p^n w Fpn
  • Relation: [ A ] w ⃗ = [ t ] [\mathbf{A}]\vec{w}=[\mathbf{t}] [A]w =[t]

直接借助 ∑ \sum -protocol 进行证明的思路如下:

  • Prover:选择随机向量 r ⃗ ← F p n \vec{r}\leftarrow\mathbb{F}_p^n r Fpn,计算 [ a ] = [ A ] r ⃗ [\mathbf{a}]=[\mathbf{A}]\vec{r} [a]=[A]r ,将 [ a ] ∈ G m × 1 [\mathbf{a}]\in\mathbb{G}^{m\times 1} [a]Gm×1发送给Verifier。
  • Verifier:选择challenges x ⃗ = ( x 1 , x 2 ) ← F p 2 \vec{x}=(x_1,x_2)\leftarrow\mathbb{F}_p^2 x =(x1,x2)Fp2,其中 x 2 ≠ 0 x_2\neq 0 x2=0
  • Prover:计算 z ⃗ = x 1 w ⃗ + x 2 r ⃗ \vec{z}=x_1\vec{w}+x_2\vec{r} z =x1w +x2r ,将 z ⃗ ∈ F p n \vec{z}\in\mathbb{F}_p^n z Fpn发送给Verifier。
  • Verifier:验证 [ A ] z ⃗ = x 1 [ t ] + x 2 [ a ] [\mathbf{A}]\vec{z}=x_1[\mathbf{t}]+x_2[\mathbf{a}] [A]z =x1[t]+x2[a]是否成立即可。

注意借助 r ⃗ \vec{r} r ,由于 x 2 ≠ 0 x_2\neq 0 x2=0,witness w ⃗ \vec{w} w completely masked in z ⃗ = x 1 w ⃗ + x 2 r ⃗ \vec{z}=x_1\vec{w}+x_2\vec{r} z =x1w +x2r ,而根据 [ a ] [\mathbf{a}] [a] r ⃗ \vec{r} r 为hard的,从而实现zero-knowledge。
以上协议具有可extractable特性,当针对相同的 r ⃗ \vec{r} r ,Verifier给两组不同的challenges x ⃗ 1 , x ⃗ 2 \vec{x}_1,\vec{x}_2 x 1,x 2,Prover返回两组不同的response z ⃗ 1 , z ⃗ 2 \vec{z}_1,\vec{z}_2 z 1,z 2,从而可extract提取出witness w ⃗ \vec{w} w 和 randomness r ⃗ \vec{r} r

注意,以上 ∑ \sum -protocol构建的证明其communication效率较低,需要有 n n n 个field elements和 m m m 个group elements。
而若借助probabilistic verification,可对其communication cost进行改进。

1.2.1 Probabilistic verification

efficient arguments of knowledge (without zero-knowledge) 的基础是:probabilistic verification of the claim。
如上,与直接verify [ A ] w ⃗ = [ t ] [\mathbf{A}]\vec{w}=[\mathbf{t}] [A]w =[t]不同:

  • Verifier:只发送一个random challenge y ← F p y\leftarrow\mathbb{F}_p yFp
  • Prover and Verifier:两者都计算 y ⃗ = ( y i ) i ∈ F p m \vec{y}=(y^i)_i\in\mathbb{F}_p^m y =(yi)iFpm [ A ⃗ ^ ] = y T [ A ] ∈ G 1 × n , [ t ^ ] = y ⃗ T [ t ] ∈ G [\hat{\vec{A}}]=y^T[\mathbf{A}]\in\mathbb{G}^{1\times n},[\hat{t}]=\vec{y}^T[\mathbf{t}]\in\mathbb{G} [A ^]=yT[A]G1×n,[t^]=y T[t]G

probabilistic verification of the claim后,基本信息转为:

  • public info: [ A ⃗ ^ ] ∈ G 1 × n , [ t ^ ] ∈ G [\hat{\vec{A}}]\in\mathbb{G}^{1\times n},[\hat{t}]\in\mathbb{G} [A ^]G1×n,[t^]G
  • witness: w ⃗ ∈ F p n \vec{w}\in\mathbb{F}_p^n w Fpn
  • Relation: [ A ⃗ ^ ] w ⃗ = [ t ^ ] [\hat{\vec{A}}]\vec{w}=[\hat{t}] [A ^]w =[t^]

probabilistic verification of the claim后,借助 ∑ \sum -protocol 进行证明的思路类似:、

  • Prover:选择随机向量 r ⃗ ← F p n \vec{r}\leftarrow\mathbb{F}_p^n r Fpn,计算 [ a ^ ] = [ A ⃗ ^ ] r ⃗ [\hat{a}]=[\hat{\vec{A}}]\vec{r} [a^]=[A ^]r ,将 [ a ^ ] ∈ G [\hat{a}]\in\mathbb{G} [a^]G发送给Verifier。
  • Verifier:选择challenges x ⃗ = ( x 1 , x 2 ) ← F p 2 \vec{x}=(x_1,x_2)\leftarrow\mathbb{F}_p^2 x =(x1,x2)Fp2,其中 x 2 ≠ 0 x_2\neq 0 x2=0
  • Prover:计算 z ⃗ = x 1 w ⃗ + x 2 r ⃗ \vec{z}=x_1\vec{w}+x_2\vec{r} z =x1w +x2r ,将 z ⃗ ∈ F p n \vec{z}\in\mathbb{F}_p^n z Fpn发送给Verifier。
  • Verifier:验证 [ A ⃗ ^ ] z ⃗ = x 1 [ t ^ ] + x 2 [ a ^ ] [\hat{\vec{A}}]\vec{z}=x_1[\hat{t}]+x_2[\hat{a}] [A ^]z =x1[t^]+x2[a^]是否成立即可。

此时,communication cost变为:有 n n n 个field elements和 仅有 1 1 1 个group elements。(与 m m m无关)

1.2.2 linear combination of protocols

在这里插入图片描述
以上协议具有可extractable特性,当针对相同的 r ⃗ \vec{r} r ,Verifier给两组不同的challenges x ⃗ 1 , x ⃗ 2 \vec{x}_1,\vec{x}_2 x 1,x 2,Prover返回两组不同的response z ⃗ 1 , z ⃗ 2 \vec{z}_1,\vec{z}_2 z 1,z 2,从而可extract提取出witness w ⃗ \vec{w} w 和 randomness r ⃗ \vec{r} r
同理,这种类型的linear combination也可用于恢复batch proofs(参见Peng等人2007年论文《Batch zero-knowledge proof and verification and its applications》),non-randomised linear combinations也适合(参见Bünz 等人2018年论文《Bulletproofs: Short Proofs for Confidential Transactions and More》)。

1.2.3 Uniform(-or-unique) response

是指Prover反馈的response只有两种可能:

  • uniformly distributed (conditioned on all later messages, not previous messages),如1.2节中的 z ⃗ \vec{z} z
  • 可以uniquely determined and efficiently computable from the challenges and all later messages,如1.2节中的 [ a ] [\mathbf{a}] [a]

对Prover response的这个要求,有利于构建trivial simulator——反向运行transcript:从最终的消息开始,依次反推至最初的消息。这样simulator就可以自己选择uniformly distributed messages,然后计算出uniquely determined ones。

1.2.4 Kernels and redundancy

可参看博客 Ker(A)——矩阵kernel

很多有趣的statement都是非线性的。
以 Bootle和Groth 2018年论文《Efficient Batch Zero-Knowledge Arguments for Low Degree Polynomials》中的polynomial commitment为例,a polynomial f ∈ F p [ X ] f\in\mathbb{F}_p[X] fFp[X] f ( X ) = a 0 + a 1 X + ⋯ + a n − 1 X n − 1 f(X)=a_0+a_1X+\cdots+a_{n-1}X^{n-1} f(X)=a0+a1X++an1Xn1,对于任意的 x ∈ F p x\in\mathbb{F}_p xFp,需证明 f ( x ) = t f(x)=t f(x)=t
最直观的方法是:直接对 f ( X ) f(X) f(X)中所有的系数 a 0 , ⋯   , a n − 1 a_0,\cdots,a_{n-1} a0,,an1进行commit,然后借助linear combination protocol就可证明 f ( x ) = t f(x)=t f(x)=t成立。
但是,如果想实现random linear combination,可在不影响soundness的情况下增加redundancy,通过巧妙地对 ”evaluate at x x x”-map 创建 a non-trivial kenerl,具体实现方式为:将 f ( X ) f(X) f(X)表示为 f ( X ) = ∑ i ( α i + β i ) X i f(X)=\sum_{i}(\alpha_i+\beta_i)X^i f(X)=i(αi+βi)Xi,然后对所有的 α i \alpha_i αi β i \beta_i βi进行commit。同理,若想表示 f ( x ) = 0 f(x)=0 f(x)=0,可直接取 α i ← F p , β i = − α i \alpha_i\leftarrow\mathbb{F}_p,\beta_i=-\alpha_i αiFp,βi=αi
从而在response中插入了randomness,总之可通过增加redundancy的方式来实现uniformly random responses。

1.2.5 argument systems组合

以inner product argument I P A a l m Z K IPA_{almZK} IPAalmZK为例,需证明:
∃ x ⃗ , y ⃗ : < x ⃗ , y ⃗ > = t \exists \vec{x},\vec{y}:<\vec{x},\vec{y}>=t x ,y :<x ,y >=t
引入随机数,转为证明:(仅需要logarithmically many (specially chosen) random components in r ⃗ , s ⃗ \vec{r},\vec{s} r ,s 。)
< x ⃗ + r ⃗ , y ⃗ + s ⃗ > = t <\vec{x}+\vec{r},\vec{y}+\vec{s}>=t <x +r ,y +s >=t,其中 < r ⃗ , y ⃗ > = < r ⃗ , s ⃗ > = < x ⃗ , s ⃗ > = 0 <\vec{r},\vec{y}>=<\vec{r},\vec{s}>=<\vec{x},\vec{s}>=0 <r ,y >=<r ,s >=<x ,s >=0

这就是“redundancy/kernel”技术的一种应用。而“uniform-or-unique”指南可保证每次response都是随机的。从而在 r ⃗ , s ⃗ \vec{r},\vec{s} r ,s 中仅需要a logarithmic number of (well-chosen) random components 就足够了。

1.3 本文主要贡献

1.3.1 linear map preimage argument (LMPA)

分两步来实现对 ∃ w ⃗ : [ A ] w ⃗ = [ t ⃗ ] \exists\vec{w}:[\mathbf{A}]\vec{w}=[\vec{t}] w :[A]w =[t ](其中 [ A ] ∈ G m × n [\mathbf{A}]\in\mathbb{G}^{m\times n} [A]Gm×n) 的证明,具有的communication complexity为 O ( log ⁡ ( n ) ) O(\log(n)) O(log(n)):(参见1.2.1节内容。)

  • 首先,使用batch verification L M P A b a t c h LMPA_{batch} LMPAbatch,在方程式左侧乘以一个随机向量 y ⃗ ∈ F p m \vec{y}\in\mathbb{F}_p^m y Fpm,获得 [ A ⃗ ^ ] = y ⃗ T [ A ] ∈ G 1 × n , [ t ^ ] = y ⃗ T [ t ] ∈ G [\hat{\vec{A}}]=\vec{y}^T[\mathbf{A}]\in\mathbb{G}^{1\times n},[\hat{t}]=\vec{y}^T[\mathbf{t}]\in\mathbb{G} [A ^]=y T[A]G1×n,[t^]=y T[t]G。此时,实现了communication cost与 m m m无关。
  • 然后,使用 L M P A z k LMPA_{zk} LMPAzk协议来证明 ∃ w ⃗ : [ A ⃗ ^ ] w ⃗ = [ t ^ ] \exists\vec{w}:[\hat{\vec{A}}]\vec{w}=[\hat{t}] w :[A ^]w =[t^]。其中 L M P A z k LMPA_{zk} LMPAzk协议源自Bootle等人2016年论文《Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting》中算法,并在此基础上实现了zero-knowledge,代价是增加了constant communication overhead和logarithmic computational overhead (in n n n)。

1.3.2 quadratic equation commit-and-prove

在Bootle等人2016年论文《Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting》和Bünz 等人2018年论文《Bulletproofs: Short Proofs for Confidential Transactions and More》的基础上,本文实现了一个 (almost) zero-knowledge inner product argument I P A a l m Z K IPA_{almZK} IPAalmZK协议,代价是增加了constant communication overhead和logarithmic computational overhead。
I P A a l m Z K IPA_{almZK} IPAalmZK协议用于证明的内容为 ∃ w ⃗ : ∀ i : < w ⃗ , Γ i w ⃗ > = 0 \exists\vec{w}:\forall i :<\vec{w},\mathbf{\Gamma_i}\vec{w}>=0 w :i:<w ,Γiw >=0,其中 Γ i ∈ F p n × n \mathbf{\Gamma_i}\in\mathbb{F}_p^{n\times n} ΓiFpn×n w ⃗ \vec{w} w 为committed to。
为提升效率,采用batch proof方式,改为证明 < w ⃗ , Γ w ⃗ > <\vec{w},\mathbf{\Gamma}\vec{w}> <w ,Γw >,其中 Γ = ∑ i r i Γ i \mathbf{\Gamma}=\sum_{i}r_i\Gamma_i Γ=iriΓi for random r i ∈ F p r_i\in\mathbb{F}_p riFp
最终生成的argument可称为 Q E S A Z K QESA_{ZK} QESAZK,具有”adaptive commit-and-prove”特性,即the statement Γ i \mathbf{\Gamma_i} Γi may be chosen after the commitment to w ⃗ \vec{w} w

commit-and-prove system Q E S A Z K QESA_{ZK} QESAZK 理论简单且可与其它arguments高效结合使用。

1.3.3 quadratic equations集合

不借助R1CS,证明任意的quadratic equations如 ( ∑ a i x i ) ( ∑ b i x i ) + ∑ c i x i = 0 (\sum a_ix_i)(\sum b_ix_i)+\sum c_ix_i=0 (aixi)(bixi)+cixi=0
可将quadratic equation表示为 < x ⃗ , x ⃗ > = ∑ x i 2 = t <\vec{x},\vec{x}>=\sum x_i^2=t <x ,x >=xi2=t,而若采用R1CS来表示,则需要 n n n个方程式: y i = x i 2 ( i = 1 , ⋯   , n − 1 ) y_i=x_i^2(i=1,\cdots,n-1) yi=xi2(i=1,,n1) and x n 2 = t − ∑ i y i x_n^2=t-\sum_{i}y_i xn2=tiyi,其中 y i y_i yi为额外引入的变量。

Q E S A Z K QESA_{ZK} QESAZK 仅需要一个(quadratic)equation来表示 < x ⃗ , x ⃗ > = t <\vec{x},\vec{x}>=t <x ,x >=t

借助这种表示,可对任意degree为 d 2 − 1 d^2-1 d21 的(univariate)多项式 f ( X ) = ∑ i = 1 d 2 − 1 a i X i f(X)=\sum_{i=1}^{d^2-1}a_iX^i f(X)=i=1d21aiXi 2 d 2d 2d 个equations和intermediate variables来表示:
y i = x i = y i − 1 x y_i=x^i=y_{i-1}x yi=xi=yi1x 其中 i = 1 , ⋯   , d , y 0 = 1 i=1,\cdots,d,y_0=1 i=1,,dy0=1
z i = x d i = z 1 z i − 1 z_i=x^{di}=z_1z_{i-1} zi=xdi=z1zi1 其中 i = 2 , ⋯   , d − 1 , z 1 = y d − 1 x , z 0 = 1 i=2,\cdots,d-1,z_1=y_{d-1}x,z_0=1 i=2,,d1z1=yd1xz0=1
最终 f ( x ) = ∑ i , j = 0 d , d − 1 a i + j d y i z j f(x)=\sum_{i,j=0}^{d,d-1}a_{i+jd}y_iz_j f(x)=i,j=0d,d1ai+jdyizj

对于S(N)ARK-friendly cryptography (Kosba等人2015年论文《“C∅C∅: A Framework for Building Composable Zero-Knowledge Proof》),支持quadratic equations 将非常有用。Matrix-vector multiplications将可快速计算,即使matrix和vector 二者都是secret的。采用类似 Jubjub 的embedding elliptic curve,其效率要优于R1CS。对于general point addition in a (twisted) Edwards curve,不再需要8个,仅需要5个constraints per bit就足够了。

1.3.4 实现shuffle证明

采用本文的 L M P A Z K LMPA_{ZK} LMPAZK Q E S A Z K QESA_{ZK} QESAZK协议可实现 Stephanie Bayer和Jens Groth 2012年论文《Efficient Zero-Knowledge Argument for Correctness of a Shuffle》中的shuffle证明算法。
(参见博客 Efficient Zero-Knowledge Argument for Correctness of a Shuffle学习笔记(1)

本文构建的shuffle证明算法 Π s h u f f l e \Pi_{shuffle} Πshuffle 可证明 correctness of a shuffle (of EIGamal ciphertexts),具有的proof size为 O ( log ⁡ ( N ) ) O(\log(N)) O(log(N)),而Stephanie Bayer和Jens Groth 2012年论文的proof size为 O ( N ) O(\sqrt{N}) O(N )

在这里插入图片描述

1.3.5 short-circuit extraction

在这里插入图片描述

2. 相关安全假设

Instead of discrete logarithm assumptions, Morillo等人2016年论文《The Kernel Matrix Diffie-Hellman Assumption》中提及的the generalization of hard (matrix) kernel assumptions, but for right-kernels, better suits our needs。

  • hard kernel assumption:(与Pedersen commitment的binding属性关联。Breaking the binding property of the commitment is equivalent to finding non-trivial elements in k e r ( [ A ] ) ker([\mathbf{A}]) ker([A])。)
    在这里插入图片描述

3. Matrix-vector multiplication argument

c k = [ g ⃗ ] = [ g 0 , g ˉ ⃗ ] ← G 1 + 1 × n ck=[\vec{g}]=[g_0,\vec{\bar{g}}]\leftarrow \mathbb{G}^{1+1\times n} ck=[g ]=[g0,gˉ ]G1+1×n 为Pedersen commitment key。其中 g 0 ∈ G , [ g ˉ ⃗ ] ∈ G n g_0\in\mathbb{G},[\vec{\bar{g}}]\in\mathbb{G}^n g0G,[gˉ ]Gn
定义 C o m g ( w ⃗ ; r ) = [ g 0 ] r + [ g ˉ ⃗ ] w ⃗ Com_{g}(\vec{w};r)=[g_0]r+[\vec{\bar{g}}]\vec{w} Comg(w ;r)=[g0]r+[gˉ ]w for r ∈ F p , w ⃗ ∈ F p n r\in\mathbb{F}_p,\vec{w}\in\mathbb{F}_p^n rFp,w Fpn
矩阵 [ A ] ∈ G m × n [\mathbf{A}]\in\mathbb{G}^{m\times n} [A]Gm×n
向量 w ⃗ ∈ F p n , [ t ⃗ ] ∈ G m \vec{w}\in\mathbb{F}_p^n, [\vec{t}]\in\mathbb{G}^m w Fpn,[t ]Gm

为了证明 ∃ w ⃗ : [ A ] w ⃗ = [ t ⃗ ] \exists\vec{w}:[\mathbf{A}]\vec{w}=[\vec{t}] w :[A]w =[t ],本文主要遵循2个原则:

  • 使用 probabilistic (batch) verification来check many things at once;
  • 若messages are too long, replace them by a shorter proof (of knowledge)。(采用shrinking commitments来keep the messages small。)

基本信息为:

  • Public info: [ A ] ∈ G m × n [\mathbf{A}]\in\mathbb{G}^{m\times n} [A]Gm×n [ t ⃗ ] ∈ G m [\vec{t}]\in\mathbb{G}^m [t ]Gm
  • Private info: w ⃗ ∈ F p n \vec{w}\in\mathbb{F}_p^n w Fpn
  • Relation: [ A ] w ⃗ = [ t ⃗ ] [\mathbf{A}]\vec{w}=[\vec{t}] [A]w =[t ]

Matrix-vector multiplication argument具有可组合性:
在这里插入图片描述

3.1 采用标准的 ∑ \sum -protocol来证明Matrix-vector multiplication argument

若采用 Cramer等人1998年论文《Zero-Knowledge Proofs for Finite Field Arithmetic; or: Can Zero-Knowledge Be for Free?》和Maurer 2015年论文《Zero-knowledge proofs of knowledge for group homomorphisms》 中标准的 ∑ \sum -protocol 来证明Matrix-vector multiplication argument,详细的实现思路为:( ∑ s t d \sum_{std} std协议)

  • Prover:选择随机向量 r ⃗ ← F p n \vec{r}\leftarrow\mathbb{F}_p^n r Fpn,计算 [ a ⃗ ] = [ A ] r ⃗ [\vec{a}]=[\mathbf{A}]\vec{r} [a ]=[A]r ,将 [ a ⃗ ] ∈ G m [\vec{a}]\in\mathbb{G}^m [a ]Gm发送给Verifier。
  • Verifier:选择随机数 β ← F p \beta\leftarrow\mathbb{F}_p βFp
  • Prover:计算 z ⃗ = β w ⃗ + r ⃗ \vec{z}=\beta\vec{w}+\vec{r} z =βw +r ,将 z ⃗ ∈ F p n \vec{z}\in\mathbb{F}_p^n z Fpn发送给Verifier。
  • Verifier:验证 [ A ] z ⃗ = β [ t ⃗ ] + [ a ⃗ ] [\mathbf{A}]\vec{z}=\beta[\vec{t}]+[\vec{a}] [A]z =β[t ]+[a ]是否成立即可。

以上基于标准 ∑ \sum -protocol的整个实现communication cost为 O ( m + n ) O(m+n) O(m+n)。需要从以下两方面进行改进:

3.2 借助batch verification 使communication与 m m m无关

需要shrink 3.1节中的 [ a ⃗ ] ∈ G m [\vec{a}]\in\mathbb{G}^m [a ]Gm,方法是将 m m m 个linear equations batch into a single linear equation。
详细的实现思路如下:( L M P A b a t c h LMPA_{batch} LMPAbatch协议)

  • Prover:选择blind 随机数 r w ← F p r_w\leftarrow \mathbb{F}_p rwFp,计算 [ c w ] = [ g 0 ] r w + [ g ˉ ⃗ ] w ⃗ = C o m ( w ⃗ ; r w ) [c_w]=[g_0]r_w+[\vec{\bar{g}}]\vec{w}=Com(\vec{w};r_w) [cw]=[g0]rw+[gˉ ]w =Com(w ;rw)。将 [ c w ] [c_w] [cw]发送给Verifier。(即先对witness进行commit。)
  • Verifier:选择随机数 x ← F p x\leftarrow \mathbb{F}_p xFp,构建随机向量 x ⃗ = ( 1 , x , ⋯   , x m − 1 ) \vec{x}=(1,x,\cdots,x^{m-1}) x =(1,x,,xm1),将 x ⃗ \vec{x} x 发送给Prover。
  • Prover和Verifier:都计算 [ A ⃗ ^ ] = x ⃗ T [ A ] ∈ G 1 × n , [ t ^ ] = x ⃗ T [ t ⃗ ] ∈ G [\hat{\vec{A}}]=\vec{x}^T[\mathbf{A}]\in\mathbb{G}^{1\times n},[\hat{t}]=\vec{x}^T[\vec{t}]\in\mathbb{G} [A ^]=x T[A]G1×n[t^]=x T[t ]G。具有 [ B ] = [ g 0 g ˉ ⃗ 0 A ⃗ ^ ] [\mathbf{B}]= \begin{bmatrix} g_0 & \vec{\bar{g}}\\ 0 & \hat{\vec{A}} \end{bmatrix} [B]=[g00gˉ A ^],转为证明 ∃ : [ B ] ( r w w ⃗ ) = [ c w t ^ ] = [ u ⃗ ] \exists: [\mathbf{B}] \begin{pmatrix} r_w\\ \vec{w} \end{pmatrix} =\begin{bmatrix} c_w\\ \hat{t} \end{bmatrix}=[\vec{u}] :[B](rww )=[cwt^]=[u ],其中 [ B ] , [ u ⃗ ] [\mathbf{B}],[\vec{u}] [B],[u ] 为public info。从而可以继续采用3.1节的 ∑ \sum -protocol来证明,调用 ∑ s t d \sum_{std} std子协议即可。

整个 L M P A b a t c h LMPA_{batch} LMPAbatch协议为 5 5 5-move HVZK-AoK。

3.3 借助递归调用来 batch the witness

借助 Bootle等人2016年论文《Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting》和 Bünz 等人2018年论文《Bulletproofs: Short Proofs for Confidential Transactions and More》 中的递归方法,使得communication cost 为 O ( log ⁡ ( n ) ) O(\log(n)) O(log(n))。(此处 n n n 为witness size。)

首先构建相应的argument,然后再添加zero-knowledge。

在3.2节的基础上,可压缩为 m = 1 m=1 m=1

k ∈ N , k ∣ n k\in\mathbb{N},k|n kN,kn,即 n / k ∈ N n/k\in\mathbb{N} n/kN
[ A ] w ⃗ = [ t ⃗ ] [\mathbf{A}]\vec{w}=[\vec{t}] [A]w =[t ] reduce为 [ A ^ ] w ⃗ ^ = [ t ⃗ ^ ] [\hat{\mathbf{A}}]\hat{\vec{w}}=[\hat{\vec{t}}] [A^]w ^=[t ^],其中 [ A ^ ] ∈ G m × n / k , w ⃗ ^ ∈ F p n / k , [ t ⃗ ^ ] ∈ G m [\hat{\mathbf{A}}]\in\mathbb{G}^{m\times n/k}, \hat{\vec{w}}\in\mathbb{F}_p^{n/k},[\hat{\vec{t}}]\in\mathbb{G}^m [A^]Gm×n/k,w ^Fpn/k,[t ^]Gm
[ A ] [\mathbf{A}] [A] w ⃗ \vec{w} w 切分为 k k k个equal blocks,有:
[ A ] = [ A 1 ∣ ⋯ ∣ A k ] ∈ ( G m × n / k ) 1 × k [\mathbf{A}]=[\mathbf{A}_1|\cdots|\mathbf{A}_k]\in(\mathbb{G}^{m\times n/k})^{1\times k} [A]=[A1Ak](Gm×n/k)1×k,其中 [ A i ] ∈ G m × n / k [\mathbf{A}_i]\in\mathbb{G}^{m\times n/k} [Ai]Gm×n/k,同理 w ⃗ = ( w 1 ⋯ w k ) ∈ ( G n / k ) k \vec{w}=\begin{pmatrix} w_1\\ \cdots \\ w_k \end{pmatrix}\in(\mathbb{G}^{n/k})^k w =w1wk(Gn/k)k
转换为需证明:
∑ i = 1 k [ A i ] w ⃗ i = [ t ⃗ ] \sum_{i=1}^{k}[\mathbf{A}_i]\vec{w}_i=[\vec{t}] i=1k[Ai]w i=[t ]

采用Bootle等人2016年论文《Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting》中的思路,直接将其展开为:
在这里插入图片描述

其中右侧矩阵中主对角线上所有元素即为待证明的内容 ∑ i = 1 k [ A i ] w i ⃗ = [ t ⃗ ] \sum_{i=1}^{k}[\mathbf{A}_i]\vec{w_i}=[\vec{t}] i=1k[Ai]wi =[t ]
有两种证明思路:

  • 方法一:
    – Prover:将矩阵中的所有元素 [ A i ] w ⃗ j [\mathbf{A}_i]\vec{w}_j [Ai]w j发送给Verifier;
    – Verifier:为矩阵左侧构建challenge vector x ⃗ ∈ F p k = ( 1 , x , ⋯   , x k − 1 ) \vec{x}\in\mathbb{F}_p^k=(1,x,\cdots,x^{k-1}) x Fpk=(1,x,,xk1),为矩阵右侧构建challenge vector y ⃗ ∈ F p k = ( 1 , y , ⋯   , y k − 1 ) \vec{y}\in\mathbb{F}_p^k=(1,y,\cdots,y^{k-1}) y Fpk=(1,y,,yk1)。将 x ⃗ , y ⃗ \vec{x},\vec{y} x ,y 发送给Prover;
    – Prover:利用矩阵运算结合律有:
    在这里插入图片描述

此时Prover可发送 [ u ⃗ i , j ] = [ A i ] w ⃗ j [\vec{u}_{i,j}]=[\mathbf{A}_i]\vec{w}_j [u i,j]=[Ai]w j,以及shrunk witness w ⃗ ^ \hat{\vec{w}} w ^。【注意此时不具有zero-knowledge。】
– Verifier:验证 ∑ i [ u ⃗ i , i ] = [ t ⃗ ] \sum_{i}[\vec{u}_{i,i}]=[\vec{t}] i[u i,i]=[t ] [ A ^ ] w ⃗ ^ = [ h a t t ⃗ ] = ∑ i , j x i y j [ u ⃗ i , j ] [\hat{\mathbf{A}}]\hat{\vec{w}}=[hat{\vec{t}}]=\sum_{i,j}x_iy_j[\vec{u}_{i,j}] [A^]w ^=[hatt ]=i,jxiyj[u i,j]是否成立?
若每个 [ A i ] [\mathbf{A}_i] [Ai]都满足hard kernel assumption,则the prover is committed to w ⃗ 1 , ⋯   , w ⃗ k \vec{w}_1,\cdots,\vec{w}_k w 1,,w k。不难发现若有足够多的challenges,则可extract w ⃗ \vec{w} w (or find non-trivial kernel elements)。以上方法,可将statement ( [ A ] , [ t ⃗ ] ) ([\mathbf{A}],[\vec{t}]) ([A],[t ]) reduce 为 ( [ A ^ ] , [ t ⃗ ^ ] ) ([\hat{\mathbf{A}}],[\hat{\vec{t}}]) ([A^],[t ^]),减小了 k k k倍。可递归调用再次reduce。

  • 方法二:(借助了Bootle 2016论文中的思路)
    – Prover:与方法一不同,Prover不再发送矩阵中的所有元素,而只让Verifier知道各个对角线元素之和 [ u ⃗ l ] = ∑ j − i = l [ A i ] w ⃗ j [\vec{u}_l]=\sum_{j-i=l}[\mathbf{A}_i]\vec{w}_j [u l]=ji=l[Ai]w j,其中 l = ± 1 , ⋯   , ± k l=\pm 1,\cdots,\pm k l=±1,,±k,且 [ u ⃗ 0 ] = [ t ⃗ ] [\vec{u}_0]=[\vec{t}] [u 0]=[t ]
    – Verifier:为了让 ∑ i , j x i y j [ A i ] w ⃗ j = z l ∑ j − i = l [ A i ] w ⃗ j \sum_{i,j}x_iy_j[\mathbf{A}_i]\vec{w}_j=z_l\sum_{j-i=l}[\mathbf{A}_i]\vec{w}_j i,jxiyj[Ai]w j=zlji=l[Ai]w j,则相应的 challenge vectors需调整为 x ⃗ ∈ F p k = ( 1 , x , ⋯   , x k − 1 ) \vec{x}\in\mathbb{F}_p^k=(1,x,\cdots,x^{k-1}) x Fpk=(1,x,,xk1) y ⃗ ∈ F p k = ( 1 , x − 1 , ⋯   , x − k + 1 ) \vec{y}\in\mathbb{F}_p^k=(1,x^{-1},\cdots,x^{-k+1}) y Fpk=(1,x1,,xk+1),此时 z l = x − l z_l=x^{-l} zl=xl【或者更高效的方式是,构建 y ⃗ ∈ F p k = ( x k − 1 , x k − 2 , ⋯   , x , 1 ) \vec{y}\in\mathbb{F}_p^k=(x^{k-1},x^{k-2},\cdots,x,1) y Fpk=(xk1,xk2,,x,1),此时 z l = x k − 1 − l z_l=x^{k-1-l} zl=xk1l】。将 x ⃗ , y ⃗ \vec{x},\vec{y} x ,y 发送给Prover;
    详细的 L M P A n o Z K LMPA_{noZK} LMPAnoZK协议为:
    在这里插入图片描述
    在这里插入图片描述

L M P A n o Z K LMPA_{noZK} LMPAnoZK协议具有recursive extraction特性:
在这里插入图片描述

4. Matrix-vector multiplication argument + Zero-Knowledge

3.2节和3.3节的Matrix-vector multiplication argument均不具有zero-knowledge,而3.1节中的communication cost为 O ( m + n ) O(m+n) O(m+n),为实现Matrix-vector multiplication argument + Zero-Knowledge 的基本思路有:

  • 方法一: ∑ s t d \sum_{std} std协议+ L M P A n o Z K LMPA_{noZK} LMPAnoZK协议= L M P A s i m p l e Z K LMPA_{simpleZK} LMPAsimpleZK协议
    借助3.1节中的 ∑ s t d \sum_{std} std协议,不再直接发送 z ⃗ ∈ F p n \vec{z}\in\mathbb{F}_p^n z Fpn使得 ∃ z ⃗ : [ A ] z ⃗ = β [ t ⃗ ] + [ a ⃗ ] \exists \vec{z}:[\mathbf{A}]\vec{z}=\beta[\vec{t}]+[\vec{a}] z :[A]z =β[t ]+[a ],而转为调用 L M P A n o Z K LMPA_{noZK} LMPAnoZK协议来证明。
    L M P A s i m p l e Z K LMPA_{simpleZK} LMPAsimpleZK协议具有communication efficiency,但是对于random r ⃗ \vec{r} r ,计算 [ A ] r ⃗ [\mathbf{A}]\vec{r} [A]r 是expensive的。与Bootle 2016和Bünz 2018方案类似, L M P A n o Z K LMPA_{noZK} LMPAnoZK协议仅用于save communication。
    在这里插入图片描述

  • 方法二:
    方法一是对所有的witness进行了blinding,实际是仅对Prover’s response进行blind就足够了,这样 a logarithmic amount of randomness 就足够了,从而可以提高Prover的计算效率。

4.1 zero knowledge of opening of a commitment.

假设 [ A ] = [ g ⃗ ] ∈ G 1 × n [\mathbf{A}]=[\vec{g}]\in\mathbb{G}^{1\times n} [A]=[g ]G1×n,其中 [ g ⃗ ] [\vec{g}] [g ]为commitment key, k = 2 k=2 k=2 [ A ] [\mathbf{A}] [A]满足hard kernel assumption by construction。
转为构建zero-knowledge argument for ∃ w ⃗ : [ g ⃗ ] w ⃗ = [ t ] \exists\vec{w}:[\vec{g}]\vec{w}=[t] w :[g ]w =[t]
∑ s t d \sum_{std} std协议中的实现不同,通过明智地选择randomness r ⃗ \vec{r} r 来构建masked version of L M P A n o Z K LMPA_{noZK} LMPAnoZK。不再是随机选择 r ⃗ ← F p n \vec{r}\leftarrow\mathbb{F}_p^n r Fpn,而是只选择logarithmically个非零的 r i r_i ri值,其它的均为零值,从而使得计算 [ g ⃗ ] r ⃗ = [ a ] [\vec{g}]\vec{r}=[a] [g ]r =[a]非常cheap。
在这里插入图片描述

从而借助Masking sets来构建challenge r ⃗ ← M n \vec{r}\leftarrow \mathbb{M}_n r Mn,可实现计算压力更小的zero-knowledge argument:
在这里插入图片描述

4.2 zero knowledge of Matrix-vector multiplication argument

对于更general的 [ A ] ∈ G m × n [\mathbf{A}]\in\mathbb{G}^{m\times n} [A]Gm×n,相对于4.1节,难点主要在:

  • m > 1 m>1 m>1的情况构建masking sets不再直观可实现,由于 u ⃗ l ∈ G m \vec{u}_l\in\mathbb{G}^m u lGm,Prover需要communicate m k mk mk elements,从而需要 m k log ⁡ ( n ) mk\log(n) mklog(n)个random entries来randomise all of [ u ⃗ l ] [\vec{u}_l] [u l]。而直观的 ∑ s t d \sum_{std} std协议仅需要 n n n个random entries。
  • making the definition of M n \mathbb{M}_n Mn dynamic and depend on [ A ] [\mathbf{A}] [A] is inconvenient and hard。需借助commitment-extension方法,如Bootle 2016方案中是通过引入随机数行来实现computationally injective,而本文是通过引入随机数列来实现surjective。由证明 [ t ⃗ ] = [ A ] w ⃗ [\vec{t}]=[\mathbf{A}]\vec{w} [t ]=[A]w 改为证明 [ B ⃗ ] = [ A ∣ H ] ( w ⃗ r ⃗ ) [\vec{B}]=[\mathbf{A}|\mathbf{H}]\begin{pmatrix} \vec{w}\\ \vec{r} \end{pmatrix} [B ]=[AH](w r )

详细的 L M P A a l m S n d LMPA_{almSnd} LMPAalmSnd实现为:
在这里插入图片描述

对以上协议中的matrix [ h ] [\mathbf{h}] [h] 进一步优化,使其基于common reference string来生成,not adversarial,最终的 L M P A Z K LMPA_{ZK} LMPAZK协议为:
在这里插入图片描述

5. 基于quadratic equations来构建arithmetic circuit satisfiability

5.1 quadratic gate表示

本文针对的场景为:(commit-and-prove system)

  • witness: w ⃗ ∈ F p n \vec{w}\in\mathbb{F}_p^n w Fpn
  • public info:matrix Γ ∈ F p n × n \mathbf{\Gamma}\in\mathbb{F}_p^{n\times n} ΓFpn×n
  • relation: w ⃗ T Γ w ⃗ = 0 \vec{w}^T\mathbf{\Gamma}\vec{w}=0 w TΓw =0

与Groth等人2008年论文《Efficient Non-interactive Proof Systems for Bilinear Groups》 和 Escala等人2014年论文《Fine-Tuning Groth-Sahai Proofs》中的定义类似,约定 w 1 = 1 w_1=1 w1=1

对于更general的quadratic equation x ⃗ T Γ x ⃗ + a ⃗ T x ⃗ = t \vec{x}^T\mathbf{\Gamma}\vec{x}+\vec{a}^T\vec{x}=t x TΓx +a Tx =t,其中 a ⃗ , x ⃗ ∈ F p n , Γ ∈ F p n × n , t ∈ F p \vec{a},\vec{x}\in\mathbb{F}_p^n,\mathbf{\Gamma}\in\mathbb{F}_p^{n\times n},t\in\mathbb{F}_p a ,x Fpn,ΓFpn×n,tFp,public info为KaTeX parse error: Expected 'EOF', got '}' at position 25: …\mathbf{\Gamma}}̲,t),也可转换为如上quadratic gate表示:
设置 w ⃗ = ( 1 x ⃗ ) \vec{w}=\begin{pmatrix} 1\\ \vec{x} \end{pmatrix} w =(1x ),从而有 w ⃗ T ( − t 0 a ⃗ Γ ) w ⃗ = 0 \vec{w}^T\begin{pmatrix} -t & 0\\ \vec{a} & \mathbf{\Gamma} \end{pmatrix}\vec{w}=0 w T(ta 0Γ)w =0

5.2 R1CS转quadratic equation

参见博客 rank-1 constraint system R1CS

R1CS的表示为: ( w ⃗ T a ⃗ ) ( b ⃗ T w ⃗ ) − c ⃗ T w ⃗ = 0 (\vec{w}^T\vec{a})(\vec{b}^T\vec{w})-\vec{c}^T\vec{w}=0 (w Ta )(b Tw )c Tw =0,其中 a ⃗ , b ⃗ , c ⃗ ∈ F p n \vec{a},\vec{b},\vec{c}\in\mathbb{F}_p^n a ,b ,c Fpn
设置 Γ = a ⃗ b ⃗ T − e ⃗ 1 c ⃗ T \mathbf{\Gamma}=\vec{a}\vec{b}^T-\vec{e}_1\vec{c}^T Γ=a b Te 1c T,其中 e ⃗ 1 = ( 1 , 0 , 0 , ⋯   , 0 ) \vec{e}_1=(1,0,0,\cdots,0) e 1=(1,0,0,,0)
可将上述R1CS表示转为quadratic equation表示:
w ⃗ T Γ w ⃗ = 0 \vec{w}^T\mathbf{\Gamma}\vec{w}=0 w TΓw =0

5.3 quadratic equation to inner product argument

由待证明的relation w ⃗ T Γ w ⃗ = 0 \vec{w}^T\mathbf{\Gamma}\vec{w}=0 w TΓw =0 观察可知,可看作 w ⃗ T Γ w ⃗ = < w ⃗ , Γ w ⃗ > \vec{w}^T\mathbf{\Gamma}\vec{w}=<\vec{w},\mathbf{\Gamma}\vec{w}> w TΓw =<w ,Γw >为an inner product,从而接下来的任务转为需要构建zero-knowledge inner-product argument。
若已知 Γ \mathbf{\Gamma} Γ,目前技术无法generate a commitment to Γ w ⃗ \mathbf{\Gamma}\vec{w} Γw efficiently。

  • Prover:首先commit to w ⃗ \vec{w} w [ c x ] = C o m c k 1 ( w ⃗ ) [c_x]=Com_{ck_1}(\vec{w}) [cx]=Comck1(w ),然后根据 Γ \mathbf{\Gamma} Γ commit to Γ w ⃗ \mathbf{\Gamma}\vec{w} Γw [ c y ] = C o m c k 2 ( G a m m a w ⃗ ) [c_y]=Com_{ck_2}(\mathbf{Gamma}\vec{w}) [cy]=Comck2(Gammaw )。最后Prover执行the inner product argument。
    Prover必须证明 [ c x ] [c_x] [cx] open to x ⃗ = w ⃗ \vec{x}=\vec{w} x =w and [ c y ] [c_y] [cy] open to y ⃗ = Γ x ⃗ \vec{y}=\mathbf{\Gamma}\vec{x} y =Γx
    采用(linear)batching技术可进一步转为证明 y ⃗ = Γ x ⃗ \vec{y}=\mathbf{\Gamma}\vec{x} y =Γx ,为了验证 y ⃗ = Γ x ⃗ \vec{y}=\mathbf{\Gamma}\vec{x} y =Γx 成立,Verifier可提供challenge s ⃗ ← F p n \vec{s}\leftarrow\mathbb{F}_p^n s Fpn,Prover证明 0 = < Γ x ⃗ − y ⃗ , s ⃗ > 0=<\mathbf{\Gamma}\vec{x}-\vec{y},\vec{s}> 0=<Γx y ,s >

从而为了证明 w ⃗ T Γ w ⃗ = 0 \vec{w}^T\mathbf{\Gamma}\vec{w}=0 w TΓw =0,可拆分为两个子inner product 证明:(其中 x ⃗ = w ⃗ , y ⃗ = Γ w ⃗ \vec{x}=\vec{w},\vec{y}=\mathbf{\Gamma}\vec{w} x =w ,y =Γw

  • < x ⃗ , y ⃗ > = 0 <\vec{x},\vec{y}>=0 <x ,y >=0
  • < Γ x ⃗ − y ⃗ , s ⃗ > = 0 <\mathbf{\Gamma}\vec{x}-\vec{y},\vec{s}>=0 <Γx y ,s >=0

可将以上两个inner product 证明batch为一个inner product,由Verifier提供challenge α \alpha α,构建witness 为 x ⃗ , y ⃗ \vec{x},\vec{y} x ,y 的待证明relation为:
在这里插入图片描述

接下来的重点是构建zero-knowledge inner product argument。

5.4 zero-knowledge inner product argument

Bootle 2016和Bünz 2018方案中的inner product argument不具有zero-knowledge。
I P A n o Z K IPA_{noZK} IPAnoZK将Bootle 2016和Bünz 2018方案进行了整合:
在这里插入图片描述
在这里插入图片描述

有多种方式来为inner product argument添加zero-knowledge属性:

  • L M P A Z K LMPA_{ZK} LMPAZK是通过采用linear combination (with “extended randomness”) 来attain zero-knowledge。
  • 直接对witness进行mask,如构建 < w ⃗ ’ + r ⃗ ’ , w ⃗ ’ ’ + r ⃗ ‘ ’ > <\vec{w}’+\vec{r}’,\vec{w}’’+\vec{r}‘’> <w +r ,w +r >,由于具有非线性特性,仅给Verifier发送 t r = < r ⃗ ’ , r ⃗ ’ ’ > t_r=<\vec{r}’,\vec{r}’’> tr=<r ,r >是不够的。若再发送 < w ⃗ ’ , r ⃗ ’ ’ > <\vec{w}’,\vec{r}’’> <w ,r > < w ⃗ ’ ’ , r ⃗ ’ > <\vec{w}’’,\vec{r}’> <w ,r >则不符合zero-knowledge要求。
    若选择随机数 r ⃗ ’ , r ⃗ ’ ’ \vec{r}’,\vec{r}’’ r ,r 采用 kernel guidline来选取:
    在这里插入图片描述

I P A a l m Z K IPA_{almZK} IPAalmZK协议的详细实现为:
在这里插入图片描述
在这里插入图片描述

5.5 quadratic equation satisfiability

对一系列的quadratic equations进行证明, Q E S A Z K QESA_{ZK} QESAZK协议为:
在这里插入图片描述
在这里插入图片描述

5.6 combine Q E S A Z K QESA_{ZK} QESAZK with other proof systems

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

如基于 Q E S A C o p y QESA_{Copy} QESACopy协议构建的range proof与Bulletproofs中构建的range proofs对比为:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6. 引申至add arithmetic circuit relations to the witness

[ A ] [\mathbf{A}] [A]的第一行为Pedersen commitment key [ g ⃗ ] [\vec{g}] [g ],则很容易 make other (zero-knowledge) statements about w ⃗ \vec{w} w by composition of zero-knowledge protocols。
如用于shuffle证明。
在这里插入图片描述

Stephanie Bayer和Jens Groth 2012年论文《Efficient Zero-Knowledge Argument for Correctness of a Shuffle》的shuffle argument 主要由两部分组成:(参见博客 Efficient Zero-Knowledge Argument for Correctness of a Shuffle学习笔记(1)

  • a product argument;
  • a multi-exponentiation argument。

本文基于 Q E S A Z K QESA_{ZK} QESAZK Q E S A C o p y QESA_{Copy} QESACopy构建的shuffle argument思路为:
在这里插入图片描述
在这里插入图片描述

Stephanie Bayer和Jens Groth 2012 的 shuffle argument proof size 为 O ( N ) O(\sqrt{N}) O(N ),而基于本文构建的 Q E S A Z K QESA_{ZK} QESAZK的shuffle argument proof size为 O ( log ⁡ ( N ) ) O(\log(N)) O(log(N))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值