1. 引言
隐私增强技术 (Privacy-Enhancing Technology,PET) 是一种旨在保护和维护用户隐私的工具,因为如今越来越多的平台处理用户的个人信息。这些技术采用不同的方法来保护私人数据,防止未经授权的访问并保持匿名。
简而言之,可以将PET视为防止违规、监视和侵入性数据收集行为的盾牌。
2. 常见的 PET 示例
PET 有多种形式,每种形式在加强数字隐私方面都有不同的用途。四种关键的PET重塑了在线安全和个人数据保护的格局:
- 1)零知识证明
- 零知识证明 (ZKP) 使一方能够向另一方证明某部分数据是真实或正确的,而无需透露信息本身。它们使用一系列交互或一串信息来验证数据,为涉及机密信息的交易提供新的隐私级别。零知识证明用于安全投票、共享医疗记录信息以及提供抵押贷款的薪资范围。
- 虽然这些技术可以在不暴露敏感数据的情况下进行安全验证,但它们通常实施起来很复杂,并不适合所有类型的数据或用例。它们需要大量计算能力进行设置和验证,并且通常需要多轮交互,这对于云端的大规模应用程序来说可能是一个障碍。
- 2)差分隐私
- 差分隐私的工作原理是向数据集注入噪声,它可以保护单个数据点,同时仍允许进行数据分析。它通过阻止识别数据集中的特定个人来保护隐私,保持匿名。差分隐私适用于医疗保健研究等场景,研究人员可以分析汇总数据以获得有价值的见解,而不会损害个人隐私,在研究趋势和行为或反应模式的同时确保匿名性。
- 这种方法确保了数据集的匿名性,但也带来了隐私和准确性之间的权衡。为保护单个数据点而添加的“噪音”有时会导致结果不太准确,尤其是在较小的数据集中。这使得它不太适合精度至关重要的情况。差分隐私也不能真正保证真实数据始终受到保护,因此很容易受到缓慢泄漏的影响。
- 3)Confidential Computing机密计算
- 机密计算通过在安全环境(即可信执行环境 (TEE))内启用数据处理,满足了在主动处理敏感信息的同时保护敏感信息的需求。这项技术在云计算中尤其有价值,因为它可以确保数据在整个生命周期内的机密性和完整性,确保数据在处理过程中受到保护,即使是来自云提供商。
- 尽管机密计算为使用中的数据提供了强大的保护,但其实施可能很复杂且耗费资源。建立和维护安全环境所需的专用硬件和软件可能会导致成本和复杂性增加。此外,机密计算本身并不能防御所有类型的漏洞,如旁道攻击。因此,在所需基础设施不易获得、运营开销与收益不相称或数据安全必须坚不可摧的情况下,其应用可能会受到限制。
- 4)全同态加密(FHE)
- 这项革命性的技术允许对加密数据进行计算而无需先解密。FHE在云计算中最为实用,而云计算又影响了上述许多示例。通过允许对加密数据进行数据分析,它对于国防、医疗保健和金融服务等行业的机密分析尤其重要。
- 从历史上看,FHE 的主要限制在于其计算强度,因此不适合大规模使用。然而,随着 Chain Reaction 的 3PU™ 隐私处理器的出现,FHE 正成为一个更可行的选择,在不影响功能的情况下提供无与伦比的数据隐私。
这些 PET 的运行原理多种多样,从加密技术到安全处理领域,但都有一个共同的目标:在日益互联的世界中保护用户隐私和数据完整性。
3. PET 和个人数据
随着最近数据隐私问题成为焦点,Meta(前身为 Facebook)等主要参与者因其处理个人数据的方式而受到严格审查。Meta 的广告定位算法依赖于用户数据,这引发了对侵犯隐私的担忧。尽管该公司声称以匿名方式使用这些数据,但确实存在违规和管理不善的情况。
作为回应,Meta 已经将安全 FHE、多方计算、 on-device learning 设备上学习和差分隐私的研究转向优先考虑,作为其内容营销策略的一部分。
将个人数据用于定向广告凸显了数字空间中用户信息的脆弱性。由于对数据滥用的担忧持续存在,因此必须探索既能确保数据机密性又不损害功能的强大解决方案。
在这个领域中,一个有前途的解决方案就是 FHE。目前,Meta 依靠大量用户数据来支持其定向广告,这涉及分析和处理用户信息以使广告与用户偏好相匹配。通过实施 FHE,像 Meta 这样的公司可以执行复杂的数据操作,同时保护用户隐私。机密数据将在整个分析过程中保持加密,确保在广告定位的所有阶段都保护用户隐私。
4. 大规模实施 FHE 需要采用新方法
虽然全同态加密 (FHE) 一直是一项很有前途的技术,但其广泛采用却因实际挑战而放缓,主要是计算效率方面的挑战。从历史上看,保护个人数据(更不用说 Meta 的数据集)所需的计算资源根本无法大规模使用 FHE。
Chain Reaction团队在了解这些挑战并致力于克服它们。Chain Reaction团队开创性的3PU™隐私处理器改变了这一领域。这款先进的处理器专为处理 FHE 的高强度计算需求而设计,使其能够以前所未有的速度和规模处理数据。
3PU™ 技术彻底改变了数据处理方式。通过利用尖端算法和硬件优化,它大大减少了对加密数据执行复杂计算所需的时间和资源。这意味着曾经被认为对 FHE 来说资源过于密集的任务现在不仅可行,而且高效实用。
参考资料
[1] Chain Reaction团队2024年1月15日博客 Privacy-Enhancing Technologies (PETs): A Brief Guide