MMUNet:形态学特征增强网络在结肠癌病理图像分割中的应用 结肠图像分析是诊断结肠癌的重要步骤,由于病理切片中细胞形状和边界的多样性,故存在困难。在本文中,我们提出了一种u型结肠癌分割网络,将深度可分卷积和形态学方法相结合,减少了模型参数的数量,有效提高了分割精度。我们利用序列卷积和外部焦点作为模型的底层架构,提高了全局和局部特征的能力。我们设计了跳跃连接,以形态学的方式融合编码器的特征,以增强形态学特征。引入边缘增强模块,利用形态学方法提取轮廓信息增强边缘特征。
医疗图像处理2023:Transformers in medical imaging: A survey 我们研究了transformer在医学图像分割、检测、分类、恢复、合成、配准、临床报告生成等任务中的应用。特别是,对于这些应用程序中的每一个,我们都开发了分类,确定了特定于应用程序的挑战,并提供了解决这些挑战的见解,并强调了最近的趋势。此外,我们对该领域的整体现状进行了批判性的讨论,包括确定关键挑战,开放问题,并概述了有希望的未来方向。
CVPR2022医疗图像-GBCNet网络:胆囊癌(GBC)超声(USG)图像检测模型 本文研究了基于深度学习的超声图像胆囊癌检测,提出了一种基于ROI选择和多尺度二阶池化的监督学习框架(GBCNet)。提出的设计有助于分类器专注于区域选择网络预测的关键GB区域。我们提出了一种基于视觉敏锐度的课程,使我们的设计能够适应纹理偏见并提高其特异性。大量的实验表明,GBCNet与课程学习相结合,可以提高基准深度分类和目标检测体系结构的性能。
(3)医疗图像处理:MRI磁共振成像-快速采集--(杨正汉) MRI(磁共振成像)中的快速采集技术主要关注于缩短K空间的填充时间,以提高成像效率和质量。K空间是MR图像原始数据的填充储存空间,填充后的资料经傅立叶转换可以重建出MR图像。
(2)医疗图像处理:MRI磁共振成像-磁共振成像脉冲序列--(杨正汉) 自旋回波--90度和180度填充K空间;反转恢复--在自旋的基础上两边加180度;梯度回波--消除每次脉冲留下的影响,以及波的次数;propeller==》K空间填充技术和FSE或FIR结合用于减少运行伪影;EPI==》采集方式,一次激发采集多个回波的形式但与单次不一样;PRESTO和GRASE==》前面几种的一种结合形成新的。
Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images 大规模视觉语言预训练模型在自然图像域内的零/少量异常检测方面取得了重大进展。然而,自然图像和医学图像之间的巨大领域差异限制了这些方法在医学异常检测中的有效性。这种多层次的自适应由多层次、逐像素的视觉语言特征对齐损失函数指导,该函数将模型的重点从自然图像中的对象语义重新校准到医学图像中的异常识别。适应的特征在各种医疗数据类型中表现出更好的泛化,即使在模型在训练期间遇到未见过的医疗模式和解剖区域的零样本场景中也是如此。明显优于目前最先进的模型,AUC得到了
springboot+vue实现登录注册,短信注册以及微信扫描登录 说明:微信扫描登录需要微信注册--要钱,感谢尚硅谷提供的免费接口;短信注册需要阿里云的注册很麻烦并且要短信费,没有接口,所以不打算实现,不过能做出效果。
医学四种概念:B超、X光、CT、核磁共振 核磁共振:核指的就是人体中水的氢原子核,使用这个技术能让身体里的以氢原子为主体的原子核保持一定的规律排列,在这个过程中机器还会持续向身体发射射频脉冲,记录并对比检查部分和正常情况的器官存在那些差异,适合脑子、脊柱、脊髓、肌肉、脂肪,但不适合动的器官。CT:X光的升级版本,原理是一样的,它是三维的,要把检查的器官切成一层一层的,与X光生成一张图片不同,CT是射线从不同角方向射入人体而产生大量平面图片,所以拍的时候不能动,再结合计算机生成立体图像,适合比如肺、心脏、血管。辐射检测:CT和X光。
医疗图像处理2023年CVPR:Label-Free Liver Tumor Segmentation-无标签肝肿瘤分割 本论文通过在CT扫描中使用合成肿瘤(synthetic tumors),人工智能模型可以准确地分割肝脏肿瘤,而无需手动注释。优势:(I)形状和质地逼真,即使是医学专业人员也会将其与真实肿瘤混淆;(II) 有效地训练人工智能模型,该模型可以与在真实肿瘤上训练的模型类似地执行肝脏肿瘤分割。
机器学习--08增强式学习RL RL其实和machine Learning很像,也是三个步骤。机器学习就是找一个函数,RL也是找一个函数,这个函数里面有两个变量-行为(Actor)和环境(Environment),两者进行互动。机器学习的三个步骤是:1.找出定义函数中的所有未知数;2.定义loss函数来训练数据;3.找到未知数参数从而得到最小的loss。而RL和这三个步骤是一样的。
一篇搞懂swin-transformer:Hierarchical Vision Transformer using Shifted Windows Swin Transformer是一种新的视觉Transformer ,它产生层次特征表示,并且对输入图像大小具有线性计算复杂度。Swin Transformer在COCO对象检测和ADE20K语义分割方面实现了最先进的性能,大大超过了以前的最佳方法。我们希望Swin Transformer在各种视觉问题上的强大表现将鼓励视觉和语言信号的统一建模。
最简单方式实现node版本的升降【没失败过】 备注:没有对应的zip,下载mis,然后进行安装一般一直点下一步,也是会生成文件的,找到安装路径文件,会得到和下面一样文件内容,原理是一样的,然后进行第四步。把压缩之后的node版本打开,全部替换掉之前安装node的位置。原理就是系统环境变量不用改。
【深度学习】 流程:数据获取、特征工程(最为重要)、建立模型、评估与应用数据特征决定了模型的上限,预处理和特征提取是最核心的,算法和参数决定逼近这个上限计算机视觉有面临的问题:物体遮蔽、背景混入等传统机器算法ML,深度学习算法DL深度学习专门用到计算机视觉上面的:主要有图像分类任务⬇。
机器学习--05GAN生成式对抗网络--生成图片 目前最好的可能是SNGAN来训练。第一代的generator的参数是随机的,输出的可能不是我们想要的结果,然后第一代的discrimination就是要分辨由generator产生的输出和正真的图片存在的不同,发现discrimination的结果不是我们要的,第二代的generator就调整参数再生成新的结果(已经满足第一代的要求了),但是第二代的discrimination也会进行分辨第二代生成的结果是否满足正真图片的要求以此迭代下去,直到discrimination觉得generator满足要求。