矩阵运算

1. 矩阵表示

m × n m\times n m×n矩阵 A A A可表示为,其中每个元素 a i j a_{ij} aij为scalar:
A = [ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a m 1 a m 2 . . . a m n ] A=\begin{bmatrix} a_{11}& a_{12} & ... & a_{1n}\\ a_{21}& a_{22} & ... & a_{2n}\\ ...& ... & ... & ...\\ a_{m1}& a_{m2} & ... & a_{mn} \end{bmatrix} A=a11a21...am1a12a22...am2............a1na2n...amn

2. 矩阵的加法和乘法

若A和B均为矩阵,则有:
A + B = ( a i j + b i j ) A+B=(a_{ij}+b_{ij}) A+B=(aij+bij)

scalar α \alpha α与矩阵A乘法:
α A = A α = ( α a i j ) . \alpha A=A\alpha=(\alpha a_{ij}). αA=Aα=(αaij).

矩阵A为 m × p m \times p m×p和B为 p × n p \times n p×n的乘积C为 m × n m \times n m×n
C = A B C=AB C=AB
c i j = ( A ) i . ( B ) . j = ∑ k = 1 p a i k b k j . c_{ij}=(A)i.(B).j=\sum_{k=1}^{p}a_{ik}b_{kj}. cij=(A)i.(B).j=k=1paikbkj.

满足以下关系:
在这里插入图片描述

3. 矩阵的转置

矩阵A的转置为:
A ′ = [ a 11 a 21 . . . a n 1 a 12 a 22 . . . a n 2 . . . . . . . . . . . . a 1 m a 2 m . . . a n m ] A'=\begin{bmatrix} a_{11}& a_{21} & ... & a_{n1}\\ a_{12}& a_{22} & ... & a_{n2}\\ ...& ... & ... & ...\\ a_{1m}& a_{2m} & ... & a_{nm} \end{bmatrix} A=a11a12...a1ma21a22...a2m............an1an2...anm

转置运算具有以下特点:
在这里插入图片描述

4. trace运算

trace通常仅对方形矩阵而言。
t r ( A ) = ∑ i = 1 m a i i tr(A)=\sum_{i=1}^{m}a_{ii} tr(A)=i=1maii

trace运算有如下特点:
在这里插入图片描述

5. 矩阵判别式

若A为 m × m m \times m m×m矩阵,其判别式表示为:
∣ A ∣ = ∑ ( − 1 ) f ( i 1 , . . . , i m ) a 1 i 1 a 2 i 2 . . . a m i m = ∑ ( − 1 ) f ( i 1 , . . . , i m ) a i 1 1 a i 2 2 . . . a i m m |A|=\sum(-1)^{f(i_1,...,i_m)}a_{1i_1}a_{2i_2}...a_{mi_m}=\sum(-1)^{f(i_1,...,i_m)}a_{i_11}a_{i_22}...a_{i_mm} A=(1)f(i1,...,im)a1i1a2i2...amim=(1)f(i1,...,im)ai11ai22...aimm

具体的,当 m = 1 m=1 m=1时, ∣ A ∣ = a 11 |A|=a_{11} A=a11
m = 2 m=2 m=2时, ∣ A ∣ = a 11 a 22 − a 12 a 21 |A|=a_{11}a_{22}-a_{12}a_{21} A=a11a22a12a21
m = 3 m=3 m=3时, ∣ A ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 13 a 22 a 31 |A|=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}-a_{13}a_{22}a_{31} A=a11a22a33+a12a23a31+a13a21a32a11a23a32a12a21a33a13a22a31.

判别式运算具有以下特征:
在这里插入图片描述

6. 矩阵逆运算

当矩阵A为 m × m m\times m m×m的判别式 ∣ A ∣ ! = 0 |A|!=0 A!=0时,存在对应的逆矩阵 A − 1 A^{-1} A1,使得:
A A − 1 = A − 1 A = I m AA^{-1}=A^{-1}A=I_m AA1=A1A=Im
其中 I m I_m Im为单位矩阵。

逆运算具有如下特征:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

7. Hadamard Product

若矩阵A和B均为 m × n m\times n m×n,则有:
A ⊙ B = [ a 11 b 11 a 12 b 12 . . . a 1 n b 1 n a 21 b 21 a 22 b 22 . . . a 2 n b 2 n . . . . . . . . . . . . a m 1 b m 1 a m 2 b m 2 . . . a m n b m n ] A\odot B=\begin{bmatrix} a_{11}b_{11}& a_{12}b_{12} & ... & a_{1n}b_{1n}\\ a_{21}b_{21}& a_{22}b_{22} & ... & a_{2n}b_{2n}\\ ...& ... & ... & ...\\ a_{m1}b_{m1}& a_{m2}b_{m2} & ... & a_{mn}b_{mn} \end{bmatrix} AB=a11b11a21b21...am1bm1a12b12a22b22...am2bm2............a1nb1na2nb2n...amnbmn

Hadamard Product运算具有如下特征:
在这里插入图片描述在这里插入图片描述
参考资料:
[1] 《Matrix Analysis for Statistics》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值