1. isogeny同源性定义
《The Arithmetic of Elliptic Curves by Silverman 2nd Edition》书中定义为:
2. isogeny同源性举例
2.1 Montgomery与edwards curve之间的同源性
如对于Curve25519,其Montgomery form为:
v
2
=
u
3
+
486662
u
2
+
u
,
q
=
2
255
−
19
v^2=u^3+486662u^2+u, q=2^{255}-19
v2=u3+486662u2+u,q=2255−19
对应的Edwards curve表示为:
x
2
+
y
2
=
1
+
(
121665
/
121666
)
x
2
y
2
x^2+y^2=1+(121665/121666)x^2y^2
x2+y2=1+(121665/121666)x2y2
相互之间的变换关系为:
(
x
,
y
)
↦
(
u
,
v
)
:
u
=
(
1
+
y
)
/
(
1
−
y
)
,
v
=
486664
u
/
x
(x,y)\mapsto (u,v): u=(1+y)/(1-y),v=\sqrt{486664}u/x
(x,y)↦(u,v):u=(1+y)/(1−y),v=486664u/x
(
u
,
v
)
↦
(
x
,
y
)
:
x
=
486664
u
/
v
,
y
=
(
u
−
1
)
/
(
u
+
1
)
(u,v)\mapsto (x,y): x=\sqrt{486664}u/v,y=(u-1)/(u+1)
(u,v)↦(x,y):x=486664u/v,y=(u−1)/(u+1)
可以说Montgomery form和Edwards curve之间为isogeny。
2.2 Edwards与Jacobi Quartic curve之间的同源性。
Jacobi Quartic curve具有如下形式:
J
e
,
A
:
=
{
(
s
,
t
)
∈
P
2
(
F
)
:
t
2
=
e
s
4
+
2
A
s
2
+
1
}
J_{e,A}:=\{(s,t)\in P^2(F): t^2=es^4+2As^2+1\}
Je,A:={(s,t)∈P2(F):t2=es4+2As2+1}
当取
e
=
a
2
,
A
=
2
a
−
d
e=a^2,A=2a-d
e=a2,A=2a−d时,对应的形式为:
J
a
2
,
2
a
−
d
:
=
{
(
s
,
t
)
∈
P
2
(
F
)
:
t
2
=
a
2
s
4
+
2
(
2
a
−
d
)
s
2
+
1
}
J_{a^2,2a-d}:=\{(s,t)\in P^2(F): t^2=a^2s^4+2(2a-d)s^2+1\}
Ja2,2a−d:={(s,t)∈P2(F):t2=a2s4+2(2a−d)s2+1}
通用的Twisted Edwards curve表示为:
ε
a
,
d
=
{
(
x
,
y
)
∈
P
2
(
F
)
:
a
x
2
+
y
2
=
1
+
d
x
2
y
2
}
\varepsilon_{a,d}=\{(x,y)\in P^2(F):ax^2+y^2=1+dx^2y^2\}
εa,d={(x,y)∈P2(F):ax2+y2=1+dx2y2}
相互之前的转换关系为:
(
s
,
t
)
↦
(
x
,
y
)
:
x
=
2
s
/
(
1
+
a
s
2
)
,
y
=
(
1
−
a
s
2
)
/
t
(s,t)\mapsto (x,y): x=2s/(1+as^2),y=(1-as^2)/t
(s,t)↦(x,y):x=2s/(1+as2),y=(1−as2)/t
(
x
,
y
)
↦
(
s
,
t
)
:
s
=
x
/
y
,
t
=
(
2
−
y
2
−
a
x
2
)
/
y
2
(x,y)\mapsto (s,t): s=x/y,t=(2-y^2-ax^2)/y^2
(x,y)↦(s,t):s=x/y,t=(2−y2−ax2)/y2
因此Jacobi Quartic curve J e , A J_{e,A} Je,A和Twisted Edwards curve ε a , d \varepsilon_{a,d} εa,d也具有同源性。
对于Jacobi quartic curve:
2.3 group theory基本概念
书《A Crash Course In Group Theory (Version 1.0)》中有:
参考资料:
[1] 书《The Arithmetic of Elliptic Curves by Silverman 2nd Edition》
[2] https://ristretto.group/details/curve_models.html
[3] 书《A Crash Course In Group Theory (Version 1.0)》