总结:之前这个算法在数论中因为素数而用的非常频繁,所以就小小的总结一下;后来才发现自己原来的代码偏的好厉害
请看我的累赘标记:其实我一开始循环中使用i*i<=tmp的,其实这样减低了这个函数的威力,直接把在变化着的n当做循环的边界是没有错的,因为每时每刻,对于变化着的n,其素数个因子也是当且仅存在一个是大于n的开方的。所以以n来做循环边界完全木有问题。然后再讲一下这个函数的原理:这个函数的i自增当且仅当i不能整除n的时候,这个就是像素数筛选的模拟,把2的的倍数的筛选出来,再把3的倍数筛选出来。只不过这里就是把每一个素数因子从小到大的抽离出来,所以随着i自增,肯定只有是n的素因子才会进入if判断中。
program:
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
#define maxn 1000005
int pp[maxn],kg;
int nn[maxn],cnt;
void get_prime_num(int n)
{
//int tmp=n; 累赘1
kg=0;
for(int i=2;i*i<=n;)//i*i =tmp 累赘2
{
if(n%i==0)
{
pp[kg]=i;
cnt=0;
while(n%i==0)
{
n/=i;
cnt++;
}
pp[kg++]=cnt; //素数个数映射数组
}
else i++; // Nice
}
if(n!=1)
{
pp[kg]=n;
nn[kg++]=1;
}
}
int main()
{
int n;
while(cin>>n)
{
get_prime_num(n);
cout<<kg<<endl;//素因子的个数
}
system("pause");
return 0;}