【MXNet TX2】成功在TX2上编译MXNet源码,并使用GPU计算(踩坑与填坑)

版权声明:本文为博主原创文章,未经博主允许不得转载,如需技术指导可邮件联系。 https://blog.csdn.net/muyouhang/article/details/81395729

承接图像分类、检测、分割、生成相关项目,私信。

【MXNet TX2】成功在TX2上编译MXNet源码,并使用GPU计算(踩坑与填坑)##

首先,便是去看官网的教程了,按照官网教程走,肯定可以成功编译mxnet,并可以执行python代码:

import mxnet as mx
mx.gpu()

但是,当你尝试执行gpu计算任务时,会提示 no kernel image **之类的错误。例如:

Check failed: (err) == (cudaSuccess) Name: mxnet_generic_kernel ErrStr:no kernel image is available for execution on the device

这是因为在官网配置教程下,没有涉及到设置CUDA_ARCH。而这是很重要的一步,因为它应该符合TX2的计算能力才可以。
所以,只有通过修改 make/config.mk ,添加如下命令:

CUDA_ARCH = -gencode arch=compute_62,code=sm_62

如果你是已经make完,遇到这个问题(既然你与本文有缘,相信肯定是的啦~~)
那么,请

make clean
make -j $(nproc)

重新开始编译。

最终,可以开始TX2上MXNet的开发之旅啦~~

展开阅读全文

没有更多推荐了,返回首页