原题链接
题意
在平面上给出一些圆的圆心坐标以及半径,并且给出起点坐标与终点坐标,保证这两点在某一个圆上,问是否能通过圆弧从起点到达终点。
思路
1、当可以从一个圆到另一个圆时,两个圆必须相交或相切。两个圆相交的条件为:①圆心的距离小于两圆半径和。②圆心的距离大于两圆半径差的绝对值。
2、因此可以通过O(n2)遍历,判断某一圆是否可以到达另外的圆,用邻接表存边的方式保存。
3、判断起点和终点位于哪个圆上。
4、dfs从起点开始,搜索起点所在圆所能到达的所有的圆,若其中有终点所在的圆,则返回true;否则为false。
代码如下
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N = 3010;
int x[N], y[N], d[N];
vector<int>v[N];
bool st[N];
int s, t;
int dfs(int u) { // 搜索起点所能到达的所有圆
if (u == t)return true;
st[u] = true;
for (int i = 0; i < v[u].size(); ++i) {
int t = v[u][i];
if (st[t])continue;
if (dfs(t))return true;
}
return false;
}
signed main() {
int n; int sx, sy, tx, ty;
cin >> n >> sx >> sy >> tx >> ty;
for (int i = 1; i <= n; ++i)
cin >> x[i] >> y[i] >> d[i];
for (int i = 1; i <= n; ++i) { // 判断圆之间是否相交
for (int j = i + 1; j <= n; ++j) {
int tmp = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
if (tmp <= (d[i] + d[j]) * (d[i] + d[j]) && tmp >= (d[i] - d[j]) * (d[i] - d[j]))
v[i].emplace_back(j), v[j].emplace_back(i);
}
}
for (int i = 1; i <= n; ++i) { // 起点重点位于哪个圆上
if ((sx - x[i]) * (sx - x[i]) + (sy - y[i]) * (sy - y[i]) == d[i] * d[i])s = i;
if ((tx - x[i]) * (tx - x[i]) + (ty - y[i]) * (ty - y[i]) == d[i] * d[i])t = i;
}
int f = dfs(s);
if (f)puts("Yes");
else puts("No");
return 0;
}