keras.losses中 reduction=‘none‘的用法

本文详细探讨了在循环神经网络中,如何使用tf.keras.losses.SparseCategoricalCrossentropy的reduction='none'选项来计算预测值与真实值的损失,特别关注于自定义padding处理。作者解释了不同reduction值的含义,并展示了如何在实际场景中消除padding对损失的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以循环神经网络为例,pred的形状是 (batch_size, num_steps, vocab_size),label的形状是 (batch_size, num_steps)。计算预测值与真实值的损失:tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction='none')(label, pred)

reduction key的可选值

  1. ‘none’:每个step位置的损失都单独保留。返回值的形状为:(batch_size, num_steps)
  2. ‘sum’:返回值 = 上述 batch_size*num_steps 个step位置的损失的和
  3. ‘sum_over_batch_size’:返回值 = 上述 batch_size × \times ×num_steps 个step位置的损失的平均值,即 ‘sum’ 返回值 除以 batch_size × \times ×num_steps
  4. ‘auto’:一般相当于 ‘sum_over_batch_size’

reduction=‘none’ 的用法

一般是想自定义损失函数以消去padding的影响时使用,因为需要将被padding位置的loss全置为零,因此需要保存每一个step位置的loss,这时就要取 reduction=‘none’

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值