Machine Learning
文章平均质量分 82
muzilan
这个作者很懒,什么都没留下…
展开
-
Stanford公开课机器学习---week2-2.Matlab/Octave 快速教程
Basic Operations 基本操作a = 1.0000 15.0000 2.0000 0.5000% ================format ================>> format long>> aa = 1.000000000000000 15.000000000000000 2.000000000000000 0.5000000原创 2015-06-04 14:20:05 · 1761 阅读 · 0 评论 -
Machine Learning机器学习自学资料整理
机器学习目前比较热,网上也散落着很多相关的公开课和学习资源,做一个汇总整理,便于大家参考对比。希望大家持续补充|– 手册类 |--- 课程图谱博客:http://blog.coursegraph.com/ |--- W3shool 关于 Python 3.xx 版本技术文档 |---- 网页地址: http://www.w3cschool.cc/python3/原创 2015-09-30 20:20:37 · 7252 阅读 · 2 评论 -
Stanford公开课机器学习---week1-1.Intrduction 机器学习介绍
文章是下面这个公开课的个人笔记,推荐的笔记里记的比较全,完全依据视频课程(有少量小错误),我的笔记依据课程按自己的理解记录一些重点,方便快速回顾。另外自己开始学这门课时搜到的好的资料,推荐给大家:|— Coursera上斯坦福大学Andrew Ng教授的“机器学习公开课”|—- 类 别:适合入门 |—- 网页地址: https://www.coursera.org/learn/mach原创 2015-11-14 15:08:06 · 1787 阅读 · 0 评论 -
Stanford公开课机器学习---week2-1.多变量线性回归 (Linear Regression with multiple variable)
3.多变量线性回归 (Linear Regression with multiple variable)3.1 多维特征(Multiple Features)n 代表特征的数量x(i)x^{(i)}代表第 i 个训练实例,是特征矩阵中的第 i 行,是一个向量(vector)。x(i)jx^{(i)}_j代表特征矩阵中第 i 行的第 j 个特征,也就是第 i 个训练实例的第 j 个特征。 多维原创 2015-05-27 12:39:35 · 2096 阅读 · 2 评论 -
Stanford公开课机器学习---week1-2.单变量线性回归(Linear Regression with One Variable)
单变量线性回归(Linear Regression with One Variable)2.1 模型表达(Model Representation)m 代表训练集中实例的数量x 代表特征/输入变量y 代表目标变量/输出变量(x,y) 代表训练集中的实例(x(i),y(i) ) 代表第 i 个观察实例h 代表学习算法的解决方案或函数也称为假设(hypothesis) 单变量线性回归:只含原创 2015-05-25 10:50:02 · 1572 阅读 · 0 评论 -
Stanford公开课机器学习---week3-1.Logistic Regression 逻辑回归
1 分类 Classification在分类问题中,我们尝试预测的是结果是否属于某一个类(例如正确或错误)。 分类问题的例子有:判断一封电子邮件是否是垃圾邮件;判断一次金融交易是否是欺诈等等。我们从二元的分类问题开始讨论。 我们将因变量(dependant variable)可能属于的两个类分别称为负向类(negative class),因变量 0 表示正向类(positive cla原创 2015-09-30 20:00:23 · 3007 阅读 · 0 评论 -
PyCharm 安装 NumPy,SciPy 等科学计算包 (Anaconda)for mac OS X
本文适用性如题啊,前一段时间学了些机器学习的东西,就想好好学下python,在10 款最好的 Python IDE中选来选去python IDE 还是选成了PyCharm ( JetBrains 开发的 Python IDE)。所以,本文适用者:喜欢或习惯使用PyCharm IDE, 或某一IDE需要用python做科学计算/ 数据挖掘/ 机器学习/ 深度学习 (也就是说需要安装NumPy,S原创 2016-01-08 00:49:27 · 60566 阅读 · 3 评论