YOLO11解决方案之分析

概述

Ultralytics提供了一系列的解决方案,利用YOLO11解决现实世界的问题,包括物体计数、模糊处理、热力图、安防系统、速度估计、物体追踪等多个方面的应用。

Ultralytics提供了三种基本的数据可视化类型:折线图(面积图)、条形图和饼图。
在这里插入图片描述

  • 折线图适合用于跟踪长短期的变化,以及比较同一时期多个组别的变化。
  • 条形图则适合比较不同类别的数量,并显示类别与其数值之间的关系。
  • 饼图可以有效地说明不同类别之间的比例,并显示整体的各个部分。

解决方案的演示代码如下:

import cv2

from ultralytics import solutions

cap = cv2.VideoCapture("path/to/video.mp4")
assert cap.isOpened(), "Error reading video file"

# Video writer
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
out = cv2.VideoWriter(
    "analytics_output.avi",
    cv2.VideoWriter_fourcc(*"MJPG"),
    fps,
    (1280, 720),  # this is fixed
)

# Initialize analytics object
analytics = solutions.Analytics(
    show=True,  # display the output
    analytics_type="line",  # pass the analytics type, could be "pie", "bar" or "area".
    model="yolo11n.pt",  # path to the YOLO11 model file
    # classes=[0, 2],  # display analytics for specific detection classes
)

# Process video
frame_count = 0
while cap.isOpened():
    success, im0 = cap.read()
    if success:
        frame_count += 1
        results = analytics(im0, frame_count)  # update analytics graph every frame

        # print(results)  # access the output

        out.write(results.plot_im)  # write the video file
    else:
        break

cap.release()
out.release()
cv2.destroyAllWindows()  # destroy all opened windows

Analytics参数

基本参数

参数类型默认值说明
datastrimages用于相似性搜索的图像目录路径。
analytics_typestrline图形类型,即 line, bar, areapie.

track参数

参数类型默认值说明
trackerstr'botsort.yaml'指定要使用的跟踪算法, bytetrack.yamlbotsort.yaml.
conffloat0.3设置检测的置信度阈值;数值越低,跟踪的物体越多,但可能会出现误报。
ioufloat0.5设置交叉重叠 (IoU) 阈值,用于过滤重叠检测。
classeslistNone按类别索引筛选结果。例如 classes=[0, 2, 3] 只跟踪指定的类别(class在COCO数据集定义)。
verboseboolTrue控制跟踪结果的显示,提供被跟踪物体的可视化输出。
devicestrNone指定用于推理的设备(例如: cpu, cuda:00). 允许用户选择CPU 、特定GPU 或其他计算设备运行模型。

可视化参数:

参数类型默认值说明
showboolFalse如果 True在一个窗口中显示注释的图像或视频。有助于在开发或测试过程中提供即时视觉反馈。
line_widthNone or intNone指定边界框的线宽。如果 None则根据图像大小自动调整线宽,使图像更加清晰。

效果展示

图像文件:

在这里插入图片描述

分析类型analytics_type=line
在这里插入图片描述

分析类型analytics_type=area

在这里插入图片描述

分析类型analytics_type=bar

在这里插入图片描述

分析类型analytics_type=pie

在这里插入图片描述

### YOLO11Pose GitHub 项目文档教程 #### 项目概述 YOLO11Pose 是基于YOLO系列目标检测框架开发的人体姿态估计工具。该项目旨在提供高效、实时的姿态识别解决方案,适用于多种应用场景,如运动分析、行为监测等[^1]。 #### 获取源代码 为了获取最新的YOLO11Pose源代码并开始使用,可以通过Git命令克隆仓库至本地环境: ```bash git clone https://gitcode.com/gh_mirrors/yo/yolo_pose.git cd yolo_pose ``` 安装依赖项前建议创建一个新的Python虚拟环境来隔离项目的运行环境: ```bash conda create -n yolo11pose python=3.9 conda activate yolo11pose pip install -r requirements.txt pip install -e . ``` 上述操作完成后即可完成YOLO11Pose的基础配置工作[^2]。 #### 数据准备与预处理 对于特定任务的数据集准备工作非常重要。以吸烟和跌倒行为为例,在实际应用中需要收集相应的图像或视频素材,并按照COCO格式标注人体关键点位置信息。具体步骤可以参照官方提供的数据集转换脚本进行处理[^3]。 #### 训练自定义模型 当准备好合适的数据之后就可以着手于训练过程了。通过调整配置文件中的参数选项能够满足不同场景下的需求。例如设置学习率、迭代次数以及验证频率等超参均会影响最终效果的好坏。更多细节可查阅README.md内的说明部分了解完整的训练流程指导。 #### 推理部署指南 经过充分调优后的模型可以直接用于生产环境中做在线预测服务。通常情况下会采用ONNX Runtime或其他轻量化推理引擎实现跨平台支持。此外还提供了API接口供第三方应用程序集成调用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值