最小割小套路

1

求最小花费。
即将割边当做选择, u → v u\to v uv边割开表示不让 u u u v v v属于不同集合的花费。
考虑 s → a → t s \to a \to t sat,如果流量是 1 1 1 2 2 2,显然割左边的边,即花费 1 1 1留住左边。
这里在介绍,对于一个点被 A A A B B B选,容易建边。
但是如果 u u u v v v之间有限制,就直接建双向边即可。[1]和[2]都可以使用。

2

求最大贡献
即转换成总贡献 − - 可以不要的最小贡献(换句话说,另一种形式的花费)

洛谷P4210
题意

最小割问题,最大贡献。
在普通问题基础上,限制为 u u u v v v在同一集合有贡献,如果不在有负贡献。

题解

最大贡献转换成总贡献 − - 最小割(不要的贡献)
对于这个限制。
我们建边:
s → u — e a 2 s\to u — \frac{e_a}{2} su2ea
u → t — e b 2 u\to t — \frac{e_b}{2} ut2eb
u → v — e a + e b 2 + e c u\to v — \frac{e_a+e_b}{2}+e_c uv2ea+eb+ec,双向边
首先,如果选择同一集合,最小割显然是 e a e_a ea或者 e b e_b eb
否则,由于最后必然会留有对 v a v_a va v b v_b vb的边,所以一定会割掉一条中间的边。
在此基础上,保证最小割的话,就是割掉 e a 2 \frac{e_a}{2} 2ea e b 2 \frac{e_b}{2} 2eb,因为会有两条路走,一条路由于有 v v v在,所以只能割中间,另一条并不是,所以割掉更小的两边。
最后即转换成了 − e a − e b − e c -e_a-e_b-e_c eaebec,所以初始总贡献为 e a + e b e_a+e_b ea+eb即能表示选择两个集合的情况。
e a + e b + v a 1 + v a 2 + v b 1 + v b 2 e_a+e_b+v_a1+v_a2+v_b1+v_b2 ea+eb+va1+va2+vb1+vb2
e a + e b + e c e_a+e_b+e_c ea+eb+ec
会不会割两边割完更优呢,根据这个,我们会发现,如果 e c > ∑ v e_c>\sum v ec>v,那么割两边更优。
但是如果发生了这样的情况,割一边全部的使得都在一个集合显然最优,例如 e b + v b 1 + v b 2 e_b+v_b1+v_b2 eb+vb1+vb2显然是较优解。

#include<bits/stdc++.h>
#define FOR(i,a,b) for(int i=a;i<=b;i++)
#define inf 0x3f3f3f3f
typedef long long ll;
using namespace std;
const int maxn=1e4+500;

struct Edge{
    int from,to;
    ll cap,flow;
};

struct Dinic{
    int n,tmp,s,t;
    vector<Edge>edges;
    vector<int>G[maxn];//邻接表用,存储的是边在edges中的序号
    bool vis[maxn];//BFS使用
    int d[maxn];//从起点到i的距离
    int cur[maxn];//当前弧下标

    void init(int n,int s,int t){
        this->n=n,this->s=s,this->t=t;
        edges.clear();
        for(int i=1;i<=n;i++)G[i].clear();
    }

    inline void AddEdge(int from,int to,ll cap){
        edges.push_back((Edge){from,to,cap,0});
        edges.push_back((Edge){to,from,0,0});
        tmp=edges.size();
        G[from].push_back(tmp-2);
        G[to].push_back(tmp-1);
    }
    inline void add2(int from,int to,int x){
        edges.push_back((Edge){from,to,x,0});
        edges.push_back((Edge){to,from,x,0});
        tmp=edges.size();
        G[from].push_back(tmp-2);
        G[to].push_back(tmp-1);
    }
    bool BFS(){
        memset(vis,0,sizeof(vis));
        queue<int>q;
        q.push(s);
        d[s]=0,vis[s]=1;
        while(!q.empty()){
            int x=q.front();q.pop();
            for(int i=0;i<G[x].size();i++){
                Edge& e = edges[G[x][i]];
                if(!vis[e.to]&&e.cap>e.flow){
                    vis[e.to]=1;
                    d[e.to]=d[x]+1;
                    q.push(e.to);
                }//只考虑残量网络中的弧
            }
        }
        return vis[t];//用于判断是否能走到底。
    }

    inline ll DFS(int x,ll a){//多路增广
        if(x==t||a==0)return a;//a表示的是当前最小,也就是接下来能用的不能超过a
        ll flow=0,f;
        for(int& i=cur[x];i<G[x].size();i++){//能保证一个dfs中不重复走同样的边(对于同一个节点),因为走过的边一定是满载的了。
            Edge& e = edges[G[x][i]];
            if(d[x]+1==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>0){
                e.flow+=f;
                edges[G[x][i]^1].flow-=f;
                flow+=f;
                a-=f;
                if(a==0)break;//f表示从这个e.to的点开始使用的最大流。
            }
        }
        return flow;
    }

    ll Maxflow(){
        ll flow=0;
        while(BFS()){
            memset(cur,0,sizeof(cur));
            flow+=DFS(s,inf);
        }
        return flow;
    }
}dc;

int main(){
    int n,m,s=2;cin>>n>>m;
    dc.init(n+2,n+1,n+2);
    dc.AddEdge(n+1,1,inf);
    dc.add2(1,n+2,1);
    dc.AddEdge(n+1,n,1);
    dc.AddEdge(n,n+2,inf);
    for(int i=2;i<=n-1;i++){
        int x;cin>>x;x*=2;
        s+=x;
        dc.AddEdge(n+1,i,x);
    }
    for(int i=2;i<=n-1;i++){
        int x;cin>>x;x*=2;
        s+=x;
        dc.AddEdge(i,n+2,x);
    }
    for(int i=1;i<=m;i++){
        int u,v,x,y,z;
        scanf("%d%d%d%d%d",&u,&v,&x,&y,&z);
        x*=2,y*=2,z*=2;
        s+=x+y;
        dc.AddEdge(n+1,u,x/2);
        dc.AddEdge(n+1,v,x/2);
        dc.AddEdge(u,n+2,y/2);
        dc.AddEdge(v,n+2,y/2);
        dc.add2(u,v,x/2+y/2+z);
    }
    int ans=(s-dc.Maxflow())/2;
    cout<<ans<<endl;
}

对于题目给的, 1 1 1 n n n已经被选择了。
需要提前建边,因为这里割表示不要,所以对于 1 1 1 t t t流量是 1 1 1 s s s 1 1 1流量是 i n f inf inf。这样必然不要割后者,也就是 1 1 1一定在左边集合。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值