图论的证明套路和图论之美

图论之最

  1. 图论常用奇技淫巧

    1. 最短/最长路:

      1. 不含奇圈 ⇒ \Rightarrow 二部图:取最短的路。还有一个技巧:两条路必有分离的点,取最后一个分离的点
    2. 极大极小取法

      1. Euler图的证明 S = { G ∣ G 连 通 且 无 奇 度 顶 点 , G 不 是 Euler图 } S=\{G|G连通且无奇度顶点,G不是\text{Euler图}\} S={ GGGEuler}

        取出边最少的图

      2. Dirac定理证明 S = { G ∣ G 最 小 度 δ ≥ ν 2 , G 不 是 Hamilton图 } S=\{G|G最小度\delta\ge\frac{\nu}{2},G不是\text{Hamilton图}\} S={ GGδ2νGHamilton}

        取出边最多的图

      3. 必有最小支配集 D D D,使得: ∀ v ∈ D , ∃ u ∈ V − D \forall v \in D,\exist u \in V - D vD,uVD N ( u ) ∩ D = { v } N(u)\cap D=\{v\} N(u)D={ v},取 G [ D ] G[D] G[D]边数最多的那个最小支配集。再用反证法。

      4. α ≥ κ ⇒ \alpha\ge\kappa\Rightarrow ακHamilton图

        最长的圈

      5. 临界色图最佳边染色

      6. 任二奇圈都有公共点,则 χ ≤ 5 \chi\le5 χ5,取最小的圈,这个圈在原图中肯定没有弦,可以3正常染色。去掉这个圈,剩下的一定不是奇圈,故是二部图,二部图是2正常可染的。证毕。

      7. Vitaver;Roy;Gallai,有向图 G → \overrightarrow{G} G 必有长为 χ ( G ) − 1 \chi(G)-1 χ(G)1的有向路

        删去最小弧集 A ′ A' A使得 G → − A ′ \overrightarrow{G}-A' G A不含有向圈。证明有向路的起点与终点异色,证明任意弧的两端异色。这里取了距离作为一个参考,同时,在证明二部图等价无奇圈时也用了点到其他点的距离作为参考构建。

      8. Tutte给图添加极多的边不能再添加,使得再添加一条边就会有完美匹配。(和临界色图思想类似,再去掉一条边色数就会减少)

    3. 数学归纳法:

      1. 树的 ε = ν − 1 \varepsilon=\nu-1 ε=ν1
      2. 连通 ⇒ ε ≥ ν − 1 \Rightarrow\varepsilon\ge\nu-1 εν1
      3. κ ≤ κ ′ \kappa\le\kappa' κκ:对 κ ′ \kappa' κ作数学归纳
      4. whitney定理:对距离作数学归纳
      5. Konig, k − k- k正则二部图有 k k k个完美匹配,对 k k k作数学归纳
      6. ⌈ ν 1 + Δ ⌉ ≤ α ′ ≤ ⌊ ν 2 ⌋ \lceil\frac{\nu}{1+\Delta}\rceil\le\alpha'\le \lfloor\frac{\nu}{2}\rfloor 1+Δνα2ν
      7. Euler公式,对 ε \varepsilon ε作数学归纳
      8. Chavatal,Lavasz底图无孤立点,则必有孤立集 S S S使得对 V ( G ) − S V(G)-S V(G)S中每个顶点 v v v,都存在 v 0 v_0 v0,在 G → \overrightarrow{G} G 中从 v 0 v_0 v0 v v v有长不超过2的有向路,对 ν \nu ν数学归纳
      9. Moon强连通竞赛图的泛圈性
    4. 平均数中值法

      1. δ ( G ) ≥ ν + k − 2 2 ⇒ \delta(G)\ge\frac{\nu+k-2}{2}\Rightarrow δ(G)2ν+k2 κ \kappa κ连通,当 k = 1 k=1 k=1得到下一个定理
      2. δ ( G ) ≥ ν − 1 2 ⇒ \delta(G)\ge\frac{\nu-1}{2}\Rightarrow δ(G)2ν1连通且 κ ′ = δ ( G ) \kappa'=\delta(G) κ=δ(G)
      3. 直径为2的连通图 κ ′ = δ ( G ) \kappa'=\delta(G) κ=δ(G)
      4. γ ≤ ν 2 \gamma\le\frac{\nu}{2} γ2ν
  2. 最难的Dirty inspiration:

    1. Tutte定理
    2. Hall定理以及其导出的匈牙利算法,值得注意的是hall定理早于tutte定理。
    3. Dirac哈密顿回路充分条件
    4. Chvatal度序列条件,证明满足这个度序列的闭包是完全图。
    5. 管梅谷中国邮路问题,(这个证明太巧妙了)以及Edmonds算法
    6. Bondy点独立和连通度,反证法。首先 ∀ x , y ∈ I , ∣ N ( x ) ∩ N ( y ) ∣ ≤ ν − α \forall x,y \in I, |N(x)\cap N(y)|\le\nu-\alpha x,yI,N(x)N(y)να,由此得 ∣ N ( x ) ∪ N ( y ) ∣ ≥ α ≥ k − 1 |N(x)\cup N(y)|\ge\alpha\ge k-1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值