博弈论初章

只是起个头,第一次遇到这样的题目,虽然很简单,但是等到闲下来一定去好好研究类似的问题。

毕竟暑期集训好像有考过。

P3150 pb的游戏(1)

题意:

你能够分割一个数成两半,另一个人挑一半继续分割,直至有个人不能分就输了。

1是必败态,2是必胜态。

假设你拿的是偶数,你分成偶数=奇数+奇数,对面只能拿奇数,并且分成奇数+偶数;

这个时候你继续只拿偶数,分成奇数+奇数,分到不能再分输的是1,而你永远是偶数,最后会是2.

所以偶数必胜。

如果拿的是奇数,就相当于上述过程中的对面,必败。

#include<cstring>
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<map>
#include<vector>
#include<set>
#include<cctype>
#include<math.h>

#define rep(a,b) for(register int i=a;i<=b;i++)
#define red(a,b) for(register int i=a;i>=b;i--)
#define  ULL unsigned long long
#define  LL long long
using namespace std;

int main()
{
     int N;
     cin>>N;
     while(N--)
     {
     	int x;
     	cin>>x;
     	if(x%2)cout<<"zs wins"<<endl;
		else cout<<"pb wins"<<endl; 
     }
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值