K-Means聚类算法

文章介绍了如何使用K-means算法对给定的数据集进行聚类,通过初始化数据,设置聚类中心,计算距离并更新中心点,直到质心不再变化。SQL脚本展示了在数据库中实现这一过程的步骤。
摘要由CSDN通过智能技术生成
/*
1.初始化数据
2.随机设置K个特征空间内的点作为初始的聚类中心
3.对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别
4.接着对着标记的聚类中之后,重新计算出每个聚类的新中点(平均值)
5.如果计算得出的新中心点与原中心点一样(质心不再移动),那么结束,否则重新进行第二步过程
*/

CREATE TABLE #T
(
	p VARCHAR(10),
	x DECIMAL(18,6),
	y DECIMAL(18,6),
	j INT
)

INSERT INTO #t(p,x,y) VALUES('p1',7,7)
INSERT INTO #t(p,x,y) VALUES('p2',2,3)
INSERT INTO #t(p,x,y) VALUES('p3',6,8)
INSERT INTO #t(p,x,y) VALUES('p4',1,4)
INSERT INTO #t(p,x,y) VALUES('p5',1,2)
INSERT INTO #t(p,x,y) VALUES('p6',3,1)
INSERT INTO #t(p,x,y) VALUES('p7',6,9)
INSERT INTO #t(p,x,y) VALUES('p8',8,8)
INSERT INTO #t(p,x,y) VALUES('p9',9,10)
INSERT INTO #t(p,x,y) VALUES('p10',5,5)
INSERT INTO #t(p,x,y) VALUES('p11',7,6)
INSERT INTO #t(p,x,y) VALUES('p12',9,3)
INSERT INTO #t(p,x,y) VALUES('p13',2,8)
INSERT INTO #t(p,x,y) VALUES('p14',5,11)
INSERT INTO #t(p,x,y) VALUES('p15',5,2)


DECLARE @K INT =2

SELECT TOP (@K) p,x,y,IDENTITY(INT,1,1) AS j
INTO #T2
FROM #T ORDER  BY NEWID()


WHILE @@ROWCOUNT>0 
BEGIN
	UPDATE f SET  j = e.j 
	FROM 
	(
		SELECT *, ROW_NUMBER() OVER(PARTITION BY p1 ORDER  BY z) AS z2  FROM 
		(
		SELECT a.p AS p1,b.p AS p2,SQRT(POWER(a.x-b.x,2)+POWER(a.y-b.y,2)) AS z
		FROM #T a cross JOIN #T2 b
		) c
	) d 
	INNER JOIN  #t2 e ON  d.p2 = e.p
	INNER JOIN #t f ON  f.p = d.p1
	WHERE z2=1

	UPDATE a SET x = b.x ,y=b.y 
	FROM #T2 a 
	INNER JOIN 
	( 
		SELECT j,AVG(x) AS x,AVG(y) AS y
		FROM #T 
		GROUP  BY j  
	) b ON a.j = b.j
    WHERE a.x <> b.x  AND a.y<>b.y 
END

SELECT *  FROM #T ORDER BY j

DROP TABLE #T
DROP TABLE #T2   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值