(1)详细阐述线性回归模型的最小二乘法(The method of least squares)表达
为了衡量真实值yi与线性回归模型的预测值wTxi之间的差距,用yi−wTxi的平方和L(w)来描述这种差距,
L(w)=N∑i=1(wTxi−yi)2=(wTXT−YT)(wTXT−YT)T=wTXTXw−2wTXTY+YYT
求使得L(w)最小时对应的参数w,即:
ˆw=argminL(w)
求导:
∂L(w)∂w=2XTXw−2XTY=0
ˆw=(XTX)−1XTY
(2) 线性回归中极大似然估计和最小二乘估计的区别和联系
线性回归的最小二乘估计 等价于 噪声ϵ∽N(0,σ2)的极大似然估计
(3)为什么多项式回归在实际问题表现不佳
多项式回归若阶数过大容易在训练数据集上过拟合,在X的边界处有置信区间明显增大,预测效果的稳定性下降
(7) 实现用线性回归模型拟合模型
- from sklearn import datasets
- import numpy as np
-
- def hypothesis(X, theta):
- return np.dot(X, theta)
-
- def computeCost(X, y, theta):
- n = X.shape[0]
- y_pred = hypothesis(X, theta)
- return np.sum(np.square(y_pred - y.reshape(-1,1)))/(2*n)
-
- def gradientDescent(X,y,theta,alpha,epoch):
- cost = np.zeros(epoch)
- for i in range(epoch):
- y_pred = hypothesis(X, theta)
- #print(y_pred.shape, y.shape)
- residues = y_pred - y.reshape(-1,1)
- #print(residues.shape)
- grad = np.dot(X.T, residues) / X.shape[0]
- theta -= alpha*grad
- cost[i] = computeCost(X,y,theta)
-
- return theta, cost
-
- boston = datasets.load_boston()
- X = boston.data
- y = boston.target
-
- X_std = (X - np.mean(X, axis=0)) / np.std(X, axis=0)
- X_std = np.concatenate([X_std,np.ones((X.shape[0],1))], axis=1)
- theta = np.zeros((X_std.shape[1],1))
- alpha = 1e-4
- epoch = 100000
-
- # perform linear regression on the data set
- g, cost = gradientDescent(X_std, y, theta, alpha, epoch)