决策引擎简介-人工智能的应用
随着技术的进步,尤其是人工智能(AI)的发展,越来越多的决策引擎开始被ai赋能。本文将探讨人工智能如何融入决策引擎,并分析其带来的深远影响。
人工智能简介
要理解人工智能为什么很适合融入决策引擎,又为什么能够大大增强其功能,我们要从人工智能的本质说起。
大多数人工智能模型,都依赖于机器学习而构建。
机器学习
机器学习又可细分为深度学习、强化学习等类别,又有监督、无监督等方式。无论是哪种算法,都遵循以下基本流程:
- 模型构建:选择并搭建一个模型,并设定初始参数。常见的模型有神经网络、交叉树等,取决于具体任务,应该选择合适的模型。例如图像识别适合用卷积神经网络,文字理解可以用循环神经网络等。
- 运行:将训练用的数据作为输入,得到相应的结果。由于初始参数的设置不可能是完美的,得到的结果也几乎必然错误百出。但是韩愈说过“人非生而知之者,孰能无惑”,人要在错误中成长,人工智能更是如此。
- 反馈:根据运行的结果,使用优化器算法,略微调整参数。
重复这一过程,算法会“发现”训练数据中的规律,并优化参数直到结果准确率达到预期。这样,我们就可以说模型“学会”了这个任务
优劣
AI模型相比传统硬编码,有以下优势:
- 能够处理复杂任务 <