【数字逻辑】学习笔记 第三章 Part2 逻辑函数的化简

一、主要内容

问题的提出

  • 同一个逻辑函数可以有多种表达形式;
  • 一种形式的表达式,对应一种电路;
  • 表达形式越复杂,则电路越复杂;

如何处理函数,以实现用尽量少的单元电路、尽量简单的电路类型来达到目的。即,逻辑函数要化简。

函数化简的目的

  • 逻辑电路所用门的数量少,每个门的输入端个数少,降低成本
  • 逻辑电路构成级数少,保证逻辑电路能可靠地工作,提高电路的工作速度和可靠性

函数化简的方法:

  • 代数化简法(公式法)
  • 卡诺图化简法

二、代数法化简逻辑函数

代数法化简逻辑函数的实质是反复运用逻辑代数的公式和规则,消去表达式中的多余项和多余变量。在用代数法化简逻辑函数时, 往往要依靠经验和技巧 ,带有一定的试凑性

方法:

  • 并项: 利用 A B + A B ‾ = A AB + A \overline B = A AB+AB=A 将两项并为一项,且消去一个变量 B B B
  • 消项: 利用 A + A B = A A + AB = A A+AB=A 消去多余的项 A B AB AB
  • 消元:利用 A + A ‾ B = A + B A + \overline AB = A + B A+AB=A+B 消去多余变量 A ‾ \overline A A
  • 配项:利用 A B + A ‾ C + B C = A B + A ‾ C AB + \overline AC + BC = AB + \overline AC AB+AC+BC=AB+AC 和互补律、重叠律先增添项,再消去多余项。

函数表达式一般化简成 与-或式 ,其最简应满足的两个条件:
1)表达式中“与”项的个数最少;
2)在满足1)的前提下,每个“与”项中的变量个数最少。
e . g . e.g. e.g. 化简 F = A C ‾ + A B C + A C D ‾ + C D F = A\overline C + ABC + AC\overline D + CD F=AC+ABC+ACD+CD
F = A C ‾ + A B C + A C D ‾ + C D = A ( C ‾ + B C ) + C ( A D ‾ + D ) = A ( C ‾ + B ) + C ( A + D ) = A C ‾ + A B + A C + C D = A ( C ‾ + C ) + A B + C D = A ( 1 + B ) + C D = A + C D \begin{aligned} F &= A\overline C + ABC + AC\overline D + CD \\ &= A(\overline C + BC) + C(A\overline D + D)\\ &= A(\overline C + B) + C(A+D)\\ &= A\overline C + AB + AC + CD\\ &= A(\overline C + C) + AB + CD\\ &= A(1 + B) + CD = A +CD \end{aligned} F=AC+ABC+ACD+CD=A(C+BC)+C(AD+D)=A(C+B)+C(A+D)=AC+AB+AC+CD=A(C+C)+AB+CD=A(1+B)+CD=A+CD

实际上,我们最经常使用的是卡诺圈法,代数法化简常常作为结果的印证,我也就不麻烦的输入公式了,直接截图吧。


三、卡诺图法化简逻辑函数

1. 卡诺图

卡诺图:是真值表的图形表示:

  • 将变量分成两组,构成二维表;
  • 行列组合排列顺序为循环码
  • 表中每个方格对应真值表中的一行,代表一个最小项。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述 ■ \blacksquare 逻辑相邻性

  • 相邻方格最小项,具有 逻辑相邻性 ,即有一个变量互为反变量
  • 具有逻辑相邻性的方格有
    • 相接 —— 几何位置相邻的方格
    • 相对 —— 上下两边、左右两边的方格
    • 相重 —— 多变量卡诺图,以对称轴相折叠,叠在一起的方格(五变量)

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

2. 卡诺图填图

卡诺图有什么用?为什么要用循环码?

  • 循环码:相邻两个码字有一位相反;
  • 卡诺图:逻辑相邻项有一个变量互为反变量;
  • 卡诺图中的两个逻辑相邻项相加可以消去一个变量。

用卡诺图法对逻辑函数进行化简时,首先要确定函数与卡诺图的关系,将函数用卡诺图的形式表现出来。真值表、表达式、卡诺图都可以表达一个逻辑函数。

1. 真值表填卡诺图

在这里插入图片描述

2. 表达式化为最小项表达式填卡诺图

对于 F = A ‾ B C ‾ + A B D + A C F = \overline AB\overline C + ABD + AC F=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值