【离散数学】数理逻辑 第一章 命题逻辑(3) 逻辑等价与蕴含

本文属于「离散数学」系列文章之一。这一系列着重于离散数学的学习和应用。由于内容随时可能发生更新变动,欢迎关注和收藏离散数学系列文章汇总目录一文以作备忘。此外,在本系列学习文章中,为了透彻理解数学知识,本人参考了诸多博客、教程、文档、书籍等资料。以下是本文的不完全参考目录,在后续学习中还会逐渐补充:

  • 离散数学及其应用 第七版 Discrete Mathematics and Its Applications 7th ,作者是 Kenneth H.Rosen
  • 离散数学 第二版,武波等编著,西安电子科技大学出版社


3. 逻辑等价与蕴含

3.1 等价

3.1.1 逻辑等价 logically equivalent

给定两个命题公式 A A A B B B ,设 P 1 , P 2 , … , P n P_1, P_2, \dots, P_n P1,P2,,Pn 为所有出现在 A A A B B B 中的命题变元( P i P_i Pi 不一定同时出现在 A A A B B B 中),若对于 P 1 , P 2 , … , P n P_1, P_2, \dots, P_n P1,P2,,Pn 的任一赋值, A A A B B B 的真值都相同(即 A ↔ B A\leftrightarrow B AB 为重言式),则称 A A A B B B 逻辑等价 logically equivalent 。记作 A ⇔ B A \Leftrightarrow B AB ,读作“ A A A 恒等于 B B B”或“ A A A 等价于 B B B”。类似 A ⇔ B A\Leftrightarrow B AB 的式子,被称作逻辑等价式

⇔ \Leftrightarrow ↔ \leftrightarrow 的区别在于:

  • ⇔ \Leftrightarrow 表示两个命题公式之间的关系,即表示 A A A B B B逻辑等价这个关系。 A ⇔ B A\Leftrightarrow B AB 不是命题公式
  • ↔ \leftrightarrow 是表示双条件的逻辑联结词,通过 ↔ \leftrightarrow 联结起来的两个命题公式将形成一个命题公式, A ↔ B A\leftrightarrow B AB命题公式

⇔ \Leftrightarrow ↔ \leftrightarrow 的联系在于定义——若对于任一赋值, A A A B B B 的真值都相同,即 A ↔ B A\leftrightarrow B AB 为重言式,则有 A ⇔ B A\Leftrightarrow B AB 。这一联系常被用于证明某个命题公式 A A A 逻辑等价于 B B B(使用真值表)。写作定理是: A , B A, B A,B 是命题公式,则 A A A B B B 逻辑等价当且仅当 A ↔ B A \leftrightarrow B AB 是一个重言式

3.1.2 常用逻辑等价式

除了真值表法(对任一赋值, A A A B B B 真值是否相同)外,我们还可以用基本恒等式来证明新的恒等式。下面列出24个常见的逻辑等价式,这些等价式都可以通过构造真值表进行验证:

定律定律描述定律代号
对合律 ¬ ¬ P ⇔ P \lnot \lnot P \Leftrightarrow P ¬¬PP E 1 E_1 E1
等幂律 P ∧ P ⇔ P P \wedge P \Leftrightarrow P PPP E 2 E_2 E2
等幂律 P ∨ P ⇔ P P \vee P \Leftrightarrow P PPP E 3 E_3 E3
交换律 P ∧ Q ⇔ Q ∧ P P \wedge Q \Leftrightarrow Q\wedge P PQQP E 4 E_4 E4
交换律 P ∨ Q ⇔ Q ∨ P P\vee Q \Leftrightarrow Q \vee P PQQP E 5 E_5 E5
结合律 P ∧ ( Q ∧ R ) ⇔ ( P ∧ Q ) ∧ R P\wedge (Q\wedge R) \Leftrightarrow (P\wedge Q)\wedge R P(QR)(PQ)R E 6 E_6 E6
结合律 P ∨ ( Q ∨ R ) ⇔ ( P ∨ Q ) ∨ R P \vee (Q\vee R)\Leftrightarrow (P\vee Q) \vee R P(QR)(PQ)R E 7 E_7 E7
分配律 P ∧ ( Q ∨ R ) ⇔ ( P ∧ Q ) ∨ ( P ∧ R ) P \wedge (Q \vee R) \Leftrightarrow (P\wedge Q) \vee (P\wedge R) P(QR)(PQ)(PR) E 8 E_8 E8
分配律 P ∨ ( Q ∧ R ) ⇔ ( P ∨ Q ) ∧ ( P ∨ R ) P\vee (Q \wedge R) \Leftrightarrow (P \vee Q) \wedge (P\vee R) P(QR)(PQ)(PR) E 9 E_9 E9
德摩根律 ¬ ( P ∧ Q ) ⇔ ¬ P ∨ ¬ Q \lnot (P\wedge Q) \Leftrightarrow \lnot P \vee \lnot Q ¬(PQ)¬P¬Q E 10 E_{10} E10
德摩根律 ¬ ( P ∨ Q ) ⇔ ¬ P ∧ ¬ Q \lnot (P\vee Q) \Leftrightarrow \lnot P \wedge \lnot Q ¬(PQ)¬P¬Q E 11 E_{11} E11
吸收律 P ∧ ( P ∨ Q ) ⇔ P P \wedge (P \vee Q) \Leftrightarrow P P(PQ)P E 12 E_{12} E12
吸收律 P ∨ ( P ∧ Q ) ⇔ P P\vee (P \wedge Q) \Leftrightarrow P P(PQ)P E 13 E_{13} E13
蕴含律 P → Q ⇔ ¬ P ∨ Q P \to Q \Leftrightarrow \lnot P \vee Q PQ¬PQ E 14 E_{14} E14
双条件律 P ↔ Q ⇔ ( P → Q ) ∧ ( Q → P ) P \leftrightarrow Q \Leftrightarrow (P \to Q) \wedge (Q \to P) PQ(PQ)(QP) E 15 E_{15} E15
零律 P ∧ F ⇔ F P \wedge F \Leftrightarrow F PFF E 16 E_{16} E16
零律 P ∨ T ⇔ T P \vee T \Leftrightarrow T PTT E 17 E_{17} E17
同一律 P ∧ T ⇔ P P \wedge T \Leftrightarrow P PTP E 18 E_{18} E18
同一律 P ∨ F ⇔ P P \vee F \Leftrightarrow P PFP E 19 E_{19} E19
矛盾律 P ∧ ¬ P ⇔ F P \wedge \lnot P \Leftrightarrow F P¬PF E 20 E_{20} E20
排中律 P ∨ ¬ P ⇔ T P\vee \lnot P \Leftrightarrow T P¬PT E 21 E_{21} E21
输出律 ( P ∧ Q ) → R ⇔ P → ( Q → R ) (P\wedge Q) \to R \Leftrightarrow P \to (Q\to R) (PQ)RP(QR) E 22 E_{22} E22
归谬律 ( P → Q ) ∧ ( P → ¬ Q ) ⇔ ¬ P (P \to Q) \wedge (P \to \lnot Q) \Leftrightarrow \lnot P (PQ)(P¬Q)¬P E 23 E_{23} E23
逆反律 P → Q ⇔ ¬ Q → ¬ P P \to Q \Leftrightarrow \lnot Q \to \lnot P PQ¬Q¬P E 24 E_{24} E24

【离散数学】数理逻辑 第一章 命题逻辑(5) 对偶式、对偶原理中我们会看到,为什么大部分逻辑等价式都成对出现,不同的只是 ∧ , ∨ \land, \lor , 互换、 T , F T, F T,F 互换(对偶特征和对偶原理)。在[【离散数学】数理逻辑 第一章 命题逻辑(7) 命题逻辑的推理理论]中我们会看到,输出律被用作CP规则法

3.1.3 代入规则、替换规则、传递规则

为什么我们可以用基本恒等式来证明,两个命题公式 A A A B B B 是否等价呢?因为有等价变换的方法。

  • 代入规则:设 A , B A, B A,B命题公式,其中 A A A 是重言式, P P P A A A 中的命题变元。如果将 A A A 中所有 P P P 均用 B B B 代入,则所得命题公式仍然是一个重言式。这条规则之所以正确,是由于重言式的值不依赖于变元的值
    例子:由于 A ∨ ¬ A A\vee \lnot A A¬A 为重言式,则用 ( P → Q ) ∧ R (P \to Q)\wedge R (PQ)R 代入 A A A,所得的公式 ( ( P → Q ) ∧ R ) ∨ ¬ ( ( P → Q ) ∧ R ) ((P\to Q) \wedge R) \vee \lnot ((P\to Q) \wedge R) ((PQ)R)¬((PQ)R) 也是重言式。

  • 代入规则的推论:设 A , B , C A, B, C A,B,C命题公式,且 A ⇔ B A\Leftrightarrow B AB P P P 为出现在 A A A B B B 中的命题变元。如果将 A A A B B B 中所有 P P P 均用 C C C 代入,分别得到 A ′ , B ′ A', B' A,B ,则有 A ′ ⇔ B ′ A'\Leftrightarrow B' AB

  • 根据代入规则及其推论,我们可以从基本恒等式(和永真蕴含式)中导出无穷多的恒等式(和永真蕴含式)。

  • 替换规则:设 A , X , Y A, X, Y A,X,Y 是命题公式, X X X A A A 的子公式,且有 X ⇔ Y X \Leftrightarrow Y XY。如果将 A A A 中的 X X X Y Y Y 来替换(不必每一处都替换),则所得的公式 B B B A A A 等价,即 A ⇔ B A\Leftrightarrow B AB这条规则之所以正确,是由于对相应变元的任一种赋值, X X X Y Y Y 真值相同,故以 Y Y Y 取代 X X X 后, B B B 在相应赋值下真值与 A A A 相同,所以 B ⇔ A B \Leftrightarrow A BA

  • 传递规则:设命题 A , B , C A, B, C A,B,C 是命题公式,若 A ⇔ B A\Leftrightarrow B AB B ⇔ C B\Leftrightarrow C BC ,则有 A ⇔ C A\Leftrightarrow C AC
    证明:因为 A ⇔ B A \Leftrightarrow B AB B ⇔ C B\Leftrightarrow C BC ,故 A ↔ B A\leftrightarrow B AB 永真, B ↔ C B\leftrightarrow C BC 永真,所以 A ↔ C A\leftrightarrow C AC 永真,从而 A ⇔ C A\Leftrightarrow C AC

现在回过头来看,对这三条规则进行总结:

  • 代入规则:
    • 目标对象:主要针对永真式,针对的是某个永真的命题公式 A A A
    • 具体操作:对永真命题公式中某个命题变元 P P P 进行代入(即全替换)
    • 操作结果:代入后所得命题公式仍然是永真式
    • 利用:重言式的值不依赖于变元的值
  • 代入规则的推论:
    • 目标对象:主要针对逻辑等价式,针对的是某个恒等式 A ⇔ B A \Leftrightarrow B AB
    • 具体操作:对两个逻辑等价的命题公式 A , B A, B A,B 中的某个命题变元 P P P 进行代入(即全替换)
    • 操作结果:代入后所得的两个命题公式 A ′ , B ′ A', B' A,B 仍然满足 A ′ ⇔ B ′ A' \Leftrightarrow B' AB ,仍是逻辑等价式
    • 利用:逻辑等价式的定义代入规则—— A ⇔ B A \Leftrightarrow B AB 当且仅当 A ↔ B A\leftrightarrow B AB 是永真式,于是对永真式 A ↔ B A\leftrightarrow B AB 中的所有 P P P 进行代入,所得结果 A ′ ↔ B ′ A' \leftrightarrow B' AB 仍然是永真式,于是 A ′ ⇔ B ′ A'\Leftrightarrow B' AB 是逻辑等价式。
  • 替换规则:
    • 目标对象:针对所有命题公式及其子公式,无论是永真式、矛盾式或偶然式;
    • 具体操作:对三个命题公式 A , X , Y A, X, Y A,X,Y X X X A A A 的子公式、 X ⇔ Y X \Leftrightarrow Y XY ,将 A A A 中的部分或全部 X X X Y Y Y替换
    • 操作结果:所得命题公式 B B B A A A 等价,即 B ⇔ A B \Leftrightarrow A BA
    • 利用:逻辑等价式的定义——对于任一赋值, X X X Y Y Y 的真值相同,所以 A A A B B B 的真值也相同。
  • 传递规则:
    • 目标对象:针对所有的命题公式,无论是永真式、矛盾式或偶然式;
    • 具体性质:三个命题公式 A , B , C A, B, C A,B,C, 若 A ⇔ B A\Leftrightarrow B AB B ⇔ C B\Leftrightarrow C BC ,则 A ⇔ C A\Leftrightarrow C AC
    • 利用:逻辑等价式的定义——因为 A ⇔ B A \Leftrightarrow B AB B ⇔ C B\Leftrightarrow C BC ,故对于任一赋值, A A A B B B 的真值相同、 B B B C C C 的真值相同,从而 A A A C C C 的真值相同, 所以 A ⇔ C A\Leftrightarrow C AC

它们的用途也不一样:

  • 代入规则及其推论:使用代入规则,可以不断代入命题公式到永真式(包括基本逻辑等价式、永真蕴含式等代表的永真式)中的命题变元,从而推出无穷无尽的永真式;使用其推论,可以代入命题公式到逻辑等价式中的命题变元,从而推出无穷无尽的恒等式。
  • 替换规则和传递规则:用于等价推演,即验证两个命题是否等价。具体来说,是对两个命题公式 A , B A, B A,B 中的一个(通常是前者),如对 A A A 的子公式反复使用逻辑等价的命题公式替换(替换规则),得到一系列等价的命题,最后替换得到 B B B ,即有 A ⇔ A 1 ⇔ A 2 ⇔ ⋯ ⇔ B A \Leftrightarrow A_1 \Leftrightarrow A_2 \Leftrightarrow \dots \Leftrightarrow B AA1A2B,从而证明 A ⇔ B A \Leftrightarrow B AB传递规则)。
    和真值表+逻辑等价式定义一样,是一种证明命题等价的方法,只是前者用于变元较少时,等价推演用于变元较多的情况。

一个示例:证明 ( P → Q ) → ( Q ∨ R ) ⇔ P ∨ Q ∨ R (P\to Q) \to (Q\vee R) \Leftrightarrow P\vee Q \vee R (PQ)(QR)PQR
解答: ( P → Q ) → ( Q ∨ R ) ⇔ ( ¬ P ∨ Q ) → ( Q ∨ R ) 蕴 含 律 和 替 换 规 则 ⇔ ¬ ( ¬ P ∨ Q ) ∨ ( Q ∨ R ) 蕴 含 律 和 替 换 规 则 ⇔ ( P ∧ ¬ Q ) ∨ ( Q ∨ R ) 德 摩 根 律 , 对 合 律 和 替 换 规 则 ⇔ ( ( P ∧ ¬ Q ) ∨ Q ) ∨ R 结 合 律 和 替 换 规 则 ⇔ ( ( P ∨ Q ) ∧ ( ¬ Q ∨ Q ) ) ∨ R 分 配 律 和 替 换 规 则 ⇔ ( ( P ∨ Q ) ∧ T ) ∨ R 排 中 律 和 替 换 规 则 ⇔ P ∨ Q ∨ R 同 一 律 和 替 换 规 则 \begin{aligned} &(P\to Q) \to (Q\vee R) \\ &\Leftrightarrow (\lnot P\vee Q) \to (Q \vee R) \quad &蕴含律和替换规则\\ &\Leftrightarrow \lnot (\lnot P\vee Q) \vee (Q\vee R) \quad &蕴含律和替换规则 \\ &\Leftrightarrow (P\wedge \lnot Q) \vee (Q\vee R) \quad &德摩根律,对合律和替换规则 \\ &\Leftrightarrow ((P\wedge \lnot Q) \vee Q) \vee R \quad &结合律和替换规则\\ &\Leftrightarrow ((P\vee Q) \wedge (\lnot Q\vee Q)) \vee R \quad &分配律和替换规则\\ &\Leftrightarrow ((P\vee Q) \wedge T) \vee R \quad &排中律和替换规则\\ &\Leftrightarrow P\vee Q \vee R \quad &同一律和替换规则 \end{aligned} (PQ)(QR)(¬PQ)(QR)¬(¬PQ)(QR)(P¬Q)(QR)((P¬Q)Q)R((PQ)(¬QQ))R((PQ)T)RPQR,


3.2 蕴含

3.2.1 蕴含 implicate

给定两个命题公式 A A A B B B ,如果 A → B A\to B AB 是一个重言式,则称 A A A 蕴含 implicate B B B ,记作 A ⇒ B A\Rightarrow B AB 。(这回书上不写什么设 P 1 , P 2 , … , P n P_1, P_2, \dots, P_n P1,P2,,Pn 为所有出现在 A A A B B B 中的命题变元……这些东西了-_-||)。类似 A ⇒ B A\Rightarrow B AB 的式子,被称作永真蕴含式

⇒ \Rightarrow → \rightarrow 的区别在于:

  • ⇒ \Rightarrow 表示两个命题公式之间的关系,即表示 A A A B B B蕴含这个关系。 A ⇒ B A\Rightarrow B AB 不是命题公式
  • → \to 是表示条件的逻辑联结词,通过 → \to 联结起来的两个命题公式将形成一个命题公式, A → B A\to B AB命题公式

⇒ \Rightarrow → \to 的联系在于定义——若对于任一赋值, A → B A \to B AB 的真值都为 T T T ,即 A → B A\to B AB 为重言式,则有 A ⇒ B A\Rightarrow B AB 。这一联系常被用于证明某个命题公式 A A A 蕴含 B B B(使用真值表)。写作定理是: A , B A, B A,B 是命题公式,则 A A A 蕴含 B B B 当且仅当 A → B A \to B AB 是一个重言式

3.2.2 常用永真蕴含式

除了真值表法(对任一赋值, A → B A\to B AB 真值都为 T T T)外,我们还可以用基本恒等式永真蕴含式来证明新的蕴含式。下面列出21个常见的永真蕴含式,这些蕴含式都可以通过构造真值表进行验证:

定律定律描述定律代号
直推式 P ⇒ P P \Rightarrow P PP I 1 I_1 I1
化简式 P ∧ Q ⇒ P P \wedge Q \Rightarrow P PQP I 2 I_2 I2
化简式 P ∧ Q ⇒ Q P\wedge Q \Rightarrow Q PQQ I 3 I_3 I3
附加式 P ⇒ P ∨ Q P \Rightarrow P\vee Q PPQ I 4 I_4 I4
附加式 Q ⇒ P ∨ Q Q \Rightarrow P\vee Q QPQ I 5 I_5 I5
变形附加式 ¬ P ⇒ P → Q \lnot P \Rightarrow P \to Q ¬PPQ I 6 I_6 I6
变形附加式 Q ⇒ P → Q Q \Rightarrow P \to Q QPQ I 7 I_7 I7
变形附加式 ¬ ( P → Q ) ⇒ P \lnot (P\to Q) \Rightarrow P ¬(PQ)P I 8 I_8 I8
变形附加式 ¬ ( P → Q ) ⇒ ¬ Q \lnot(P\to Q) \Rightarrow \lnot Q ¬(PQ)¬Q I 9 I_9 I9
假言推理 P ∧ ( P → Q ) ⇒ Q P \wedge (P\to Q) \Rightarrow Q P(PQ)Q I 10 I_{10} I10
拒取式 ¬ Q ∧ ( P → Q ) ⇒ ¬ P \lnot Q\wedge (P\to Q) \Rightarrow \lnot P ¬Q(PQ)¬P I 11 I_{11} I11
析取三段论 ¬ P ∧ ( P ∨ Q ) ⇒ Q \lnot P \wedge (P \vee Q) \Rightarrow Q ¬P(PQ)Q I 12 I_{12} I12
前提三段论 ( P → Q ) ∧ ( Q → R ) ⇒ P → R (P\to Q) \wedge (Q\to R) \Rightarrow P \to R (PQ)(QR)PR I 13 I_{13} I13
构造性二难推理 ( P ∨ Q ) ∧ ( P → R ) ∧ ( Q → S ) ⇒ ( R ∨ S ) (P\vee Q) \wedge (P\to R) \wedge (Q\to S) \Rightarrow (R\vee S) (PQ)(PR)(QS)(RS) I 14 I_{14} I14
破坏性二难推理 ( ¬ R ∨ ¬ S ) ∧ ( P → R ) ∧ ( Q → S ) ⇒ ( ¬ P ∨ ¬ Q ) (\lnot R\vee \lnot S) \wedge (P\to R) \wedge (Q\to S) \Rightarrow (\lnot P \vee \lnot Q) (¬R¬S)(PR)(QS)(¬P¬Q) I 15 I_{15} I15
合取二难推理 ( P ∧ Q ) ∧ ( P → R ) ∧ ( Q → S ) ⇒ R ∧ S (P\wedge Q) \wedge (P\to R) \wedge (Q\to S) \Rightarrow R\wedge S (PQ)(PR)(QS)RS I 16 I_{16} I16
逆条件附加 ( P → Q ) ⇒ ( Q → R ) → ( P → R ) (P\to Q) \Rightarrow (Q\to R) \to (P \to R) (PQ)(QR)(PR) I 17 I_{17} I17
条件归并 ( P → Q ) ∧ ( R → S ) ⇒ ( P ∧ R ) → ( Q ∧ S ) (P \to Q) \wedge (R\to S) \Rightarrow (P\wedge R) \to (Q\wedge S) (PQ)(RS)(PR)(QS) I 18 I_{18} I18
双条件三段论 ( P ↔ Q ) ∧ ( Q ↔ R ) ⇒ ( P ↔ R ) (P\leftrightarrow Q) \wedge (Q\leftrightarrow R) \Rightarrow (P \leftrightarrow R) (PQ)(QR)(PR) I 19 I_{19} I19
前后件附加 P → Q ⇒ ( P ∨ R ) → ( Q ∨ R ) P\to Q \Rightarrow (P\vee R) \to (Q\vee R) PQ(PR)(QR) I 20 I_{20} I20
前后件附加 P → Q ⇒ ( P ∧ R ) → ( Q ∧ R ) P\to Q \Rightarrow (P\wedge R) \to (Q\wedge R) PQ(PR)(QR) I 21 I_{21} I21

3.2.3 蕴含关系的常用性质、与等价关系的联系

定理:设 A , B A, B A,B 是任意两个命题公式, A ⇔ B A\Leftrightarrow B AB 当且仅当 A ⇒ B A \Rightarrow B AB B ⇒ A B\Rightarrow A BA
证明:

  • 充分性:由于 A ⇔ B A \Leftrightarrow B AB ,则 A ↔ B A\leftrightarrow B AB 为重言式。因为 A ↔ B ⇔ ( A → B ) ∧ ( B → A ) A \leftrightarrow B \Leftrightarrow (A \to B) \wedge (B \to A) AB(AB)(BA)(双条件律),所以 A → B A\to B AB T T T B → A B \to A BA T T T ,即 A ⇒ B A\Rightarrow B AB 并且 B ⇒ A B\Rightarrow A BA
  • 必要性:假设 A ⇒ B A \Rightarrow B AB B ⇒ A B \Rightarrow A BA ,则 A → B A\to B AB T T T B → A B \to A BA T T T ,所以 A ↔ B A\leftrightarrow B AB T T T 为重言式,则有 A ⇔ B A\Leftrightarrow B AB

这一定理揭示了蕴含关系和等价关系间紧密的联系,也能得到证明两个命题公式等价的又一种方法,即证明两个命题公式相互蕴含。

蕴含关系常用的几个性质:

  • 性质1:设 A , B , C A, B, C A,B,C 都是命题公式,如果 A ⇒ B A\Rightarrow B AB 并且 A A A 是重言式,则 B B B 也是重言式。
    证明:由于 A ⇒ B A \Rightarrow B AB A → B A \to B AB 是重言式,并且 A A A 是重言式,根据条件联结词的性质, B B B 也是重言式。
  • 性质2:如果 A ⇒ B A\Rightarrow B AB 并且 B ⇒ C B\Rightarrow C BC ,则 A ⇒ C A\Rightarrow C AC ,即蕴含关系和等价关系一样可以传递
    证明:如果 A ⇒ B A\Rightarrow B AB B ⇒ C B\Rightarrow C BC ,则 A → B A\to B AB B → C B\to C BC 是重言式。利用前提三段论 ( A → B ) ∧ ( B → C ) ⇒ A → C (A \to B) \wedge (B\to C) \Rightarrow A \to C (AB)(BC)AC 和性质1,可知 A → C A \to C AC 也是重言式,所以 A ⇒ C A\Rightarrow C AC
  • 性质3:如果 A ⇒ B A \Rightarrow B AB A ⇒ C A\Rightarrow C AC ,则 A ⇒ B ∧ C A\Rightarrow B \wedge C ABC
    证明:如果 A ⇒ B A\Rightarrow B AB A ⇒ C A\Rightarrow C AC ,则 A → B A\to B AB A → C A\to C AC 是重言式。利用肯定前件法,设 A A A T T T ,则 B , C B, C B,C T T T ,从而 B ∧ C B \wedge C BC T T T ,即有 A ⇒ B ∧ C A \Rightarrow B\wedge C ABC
  • 性质4:如果 A ⇒ C A \Rightarrow C AC B ⇒ C B\Rightarrow C BC ,则 A ∨ B ⇒ C A\vee B \Rightarrow C ABC
    证明:如果 A ⇒ C A\Rightarrow C AC B ⇒ C B\Rightarrow C BC ,则 A → C A\to C AC B → C B\to C BC 是重言式。利用否定后件法,设 C C C F F F ,则 A , B A, B A,B F F F ,从而 A ∨ B A \vee B AB F F F ,即有 A ∨ B ⇒ C A\vee B \Rightarrow C ABC

这其中最重要的是性质2,类似于等价关系的传递规则。


3.3 逻辑等价和蕴含式证明思路总结

第一种也是最简单的一种,从定义出发:

  • 要证明 A ⇔ B A \Leftrightarrow B AB ,就要证明对任一赋值, A , B A, B A,B 的真值相同,即证明 A ↔ B A\leftrightarrow B AB 是重言式。
  • 要证明 A ⇒ B A\Rightarrow B AB ,就要证明 A → B A\to B AB 是重言式。
  • 具体方法:
    • 可以用真值表证明对任一赋值, A ↔ B A\leftrightarrow B AB A → B A\to B AB 的真值恒为 T T T
    • 或者运用等价推演方法,不断对命题公式 A ↔ B A\leftrightarrow B AB A → B A\to B AB 中的子公式使用逻辑等价的命题公式进行替换(替换规则),从而得到一系列等价的命题(用 ⇔ \Leftrightarrow 串联起来),最终替换得到 A ↔ B ⇔ T A \leftrightarrow B \Leftrightarrow T ABT A → B ⇔ T A\to B \Leftrightarrow T ABT传递规则)。因此 A ↔ B A\leftrightarrow B AB A → B A\to B AB 是重言式, A ⇔ B A \Leftrightarrow B AB A ⇒ B A\Rightarrow B AB 得证。

第二种也是运用等价推演方法,只是对逻辑等价关系和蕴含关系的做法不一样:

  • 要证明 A ⇔ B A \Leftrightarrow B AB ,就要对两个命题公式中的一个,如对 A A A 的子公式反复使用逻辑等价的命题公式替换(替换规则),得到一系列等价的命题(用 ⇔ \Leftrightarrow 串联起来),最后替换得到 B B B ,即有 A ⇔ A 1 ⇔ A 2 ⇔ ⋯ ⇔ B A \Leftrightarrow A_1 \Leftrightarrow A_2 \Leftrightarrow \dots \Leftrightarrow B AA1A2B ,从而证明 A ⇔ B A \Leftrightarrow B AB传递规则)。
  • 要证明 A ⇒ B A\Rightarrow B AB ,就要对命题公式 A A A 的子公式反复使用逻辑等价的命题公式永真蕴含式进行替换(替换规则和永真蕴含式的推导规则),得到一系列或等价或蕴含的命题(用 ⇒ \Rightarrow 串联起来),最后替换得到 B B B ,即有 A ⇒ A 1 ⇒ ⋯ ⇒ B A \Rightarrow A_1 \Rightarrow \dots \Rightarrow B AA1B ,从而证明 A ⇒ B A \Rightarrow B AB蕴含关系的传递性)。

一个示例:证明 ¬ Q ∧ ( P → Q ) ⇒ ¬ P \lnot Q \wedge (P\to Q) \Rightarrow \lnot P ¬Q(PQ)¬P
解答: ¬ Q ∧ ( P → Q ) ⇒ ¬ Q ∧ ( ¬ P ∨ Q ) 蕴 含 律 和 替 换 规 则 ⇒ ( ¬ Q ∧ ¬ P ) ∨ ( ¬ Q ∧ Q ) 分 配 律 和 替 换 规 则 ⇒ ( ¬ Q ∧ ¬ P ) ∨ F 矛 盾 律 和 替 换 规 则 ⇒ ¬ Q ∧ ¬ P 同 一 律 和 替 换 规 则 ⇒ ¬ P 化 简 式 \begin{aligned} &\lnot Q \wedge (P\to Q) \\ &\Rightarrow \lnot Q\wedge (\lnot P\vee Q) \quad &蕴含律和替换规则\\ &\Rightarrow (\lnot Q \wedge \lnot P) \vee (\lnot Q\wedge Q) \quad &分配律和替换规则\\ &\Rightarrow (\lnot Q \wedge \lnot P) \vee F \quad &矛盾律和替换规则\\ &\Rightarrow \lnot Q \wedge \lnot P \quad &同一律和替换规则\\ &\Rightarrow \lnot P \quad &化简式\\ \end{aligned} ¬Q(PQ)¬Q(¬PQ)(¬Q¬P)(¬QQ)(¬Q¬P)F¬Q¬P¬P

逻辑等价关系的第三种证明方法,就是证明两个命题公式相互蕴含,很少用的一种证明方法。蕴含关系的第三种证明方法:

  • 肯定前件法:假设 A A A T T T ,如果能推出 B B B T T T ,则 A ⇒ B A \Rightarrow B AB
  • 否定后件法:假设 B B B F F F ,如果能推出 A A A F F F ,则 A ⇒ B A\Rightarrow B AB
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值