本文属于「离散数学」系列文章之一。这一系列着重于离散数学的学习和应用。由于内容随时可能发生更新变动,欢迎关注和收藏离散数学系列文章汇总目录一文以作备忘。此外,在本系列学习文章中,为了透彻理解数学知识,本人参考了诸多博客、教程、文档、书籍等资料。以下是本文的不完全参考目录,在后续学习中还会逐渐补充:
- 离散数学及其应用 第七版
Discrete Mathematics and Its Applications 7th
,作者是Kenneth H.Rosen
- 离散数学 第二版,武波等编著,西安电子科技大学出版社
文章目录
3. 逻辑等价与蕴含
3.1 等价
3.1.1 逻辑等价 logically equivalent
给定两个命题公式
A
A
A 和
B
B
B ,设
P
1
,
P
2
,
…
,
P
n
P_1, P_2, \dots, P_n
P1,P2,…,Pn 为所有出现在
A
A
A 和
B
B
B 中的命题变元(
P
i
P_i
Pi 不一定同时出现在
A
A
A 和
B
B
B 中),若对于
P
1
,
P
2
,
…
,
P
n
P_1, P_2, \dots, P_n
P1,P2,…,Pn 的任一赋值,
A
A
A 和
B
B
B 的真值都相同(即
A
↔
B
A\leftrightarrow B
A↔B 为重言式),则称
A
A
A 和
B
B
B 逻辑等价 logically equivalent
。记作
A
⇔
B
A \Leftrightarrow B
A⇔B ,读作“
A
A
A 恒等于
B
B
B”或“
A
A
A 等价于
B
B
B”。类似
A
⇔
B
A\Leftrightarrow B
A⇔B 的式子,被称作逻辑等价式。
⇔ \Leftrightarrow ⇔ 和 ↔ \leftrightarrow ↔ 的区别在于:
- ⇔ \Leftrightarrow ⇔ 表示两个命题公式之间的关系,即表示 A A A 和 B B B 有逻辑等价这个关系。 A ⇔ B A\Leftrightarrow B A⇔B 不是命题公式。
- ↔ \leftrightarrow ↔ 是表示双条件的逻辑联结词,通过 ↔ \leftrightarrow ↔ 联结起来的两个命题公式将形成一个命题公式, A ↔ B A\leftrightarrow B A↔B 是命题公式。
⇔ \Leftrightarrow ⇔ 和 ↔ \leftrightarrow ↔ 的联系在于定义——若对于任一赋值, A A A 和 B B B 的真值都相同,即 A ↔ B A\leftrightarrow B A↔B 为重言式,则有 A ⇔ B A\Leftrightarrow B A⇔B 。这一联系常被用于证明某个命题公式 A A A 逻辑等价于 B B B(使用真值表)。写作定理是:设 A , B A, B A,B 是命题公式,则 A A A 和 B B B 逻辑等价当且仅当 A ↔ B A \leftrightarrow B A↔B 是一个重言式。
3.1.2 常用逻辑等价式
除了真值表法(对任一赋值, A A A 和 B B B 真值是否相同)外,我们还可以用基本恒等式来证明新的恒等式。下面列出24个常见的逻辑等价式,这些等价式都可以通过构造真值表进行验证:
定律 | 定律描述 | 定律代号 |
---|---|---|
对合律 | ¬ ¬ P ⇔ P \lnot \lnot P \Leftrightarrow P ¬¬P⇔P | E 1 E_1 E1 |
等幂律 | P ∧ P ⇔ P P \wedge P \Leftrightarrow P P∧P⇔P | E 2 E_2 E2 |
等幂律 | P ∨ P ⇔ P P \vee P \Leftrightarrow P P∨P⇔P | E 3 E_3 E3 |
交换律 | P ∧ Q ⇔ Q ∧ P P \wedge Q \Leftrightarrow Q\wedge P P∧Q⇔Q∧P | E 4 E_4 E4 |
交换律 | P ∨ Q ⇔ Q ∨ P P\vee Q \Leftrightarrow Q \vee P P∨Q⇔Q∨P | E 5 E_5 E5 |
结合律 | P ∧ ( Q ∧ R ) ⇔ ( P ∧ Q ) ∧ R P\wedge (Q\wedge R) \Leftrightarrow (P\wedge Q)\wedge R P∧(Q∧R)⇔(P∧Q)∧R | E 6 E_6 E6 |
结合律 | P ∨ ( Q ∨ R ) ⇔ ( P ∨ Q ) ∨ R P \vee (Q\vee R)\Leftrightarrow (P\vee Q) \vee R P∨(Q∨R)⇔(P∨Q)∨R | E 7 E_7 E7 |
分配律 | P ∧ ( Q ∨ R ) ⇔ ( P ∧ Q ) ∨ ( P ∧ R ) P \wedge (Q \vee R) \Leftrightarrow (P\wedge Q) \vee (P\wedge R) P∧(Q∨R)⇔(P∧Q)∨(P∧R) | E 8 E_8 E8 |
分配律 | P ∨ ( Q ∧ R ) ⇔ ( P ∨ Q ) ∧ ( P ∨ R ) P\vee (Q \wedge R) \Leftrightarrow (P \vee Q) \wedge (P\vee R) P∨(Q∧R)⇔(P∨Q)∧(P∨R) | E 9 E_9 E9 |
德摩根律 | ¬ ( P ∧ Q ) ⇔ ¬ P ∨ ¬ Q \lnot (P\wedge Q) \Leftrightarrow \lnot P \vee \lnot Q ¬(P∧Q)⇔¬P∨¬Q | E 10 E_{10} E10 |
德摩根律 | ¬ ( P ∨ Q ) ⇔ ¬ P ∧ ¬ Q \lnot (P\vee Q) \Leftrightarrow \lnot P \wedge \lnot Q ¬(P∨Q)⇔¬P∧¬Q | E 11 E_{11} E11 |
吸收律 | P ∧ ( P ∨ Q ) ⇔ P P \wedge (P \vee Q) \Leftrightarrow P P∧(P∨Q)⇔P | E 12 E_{12} E12 |
吸收律 | P ∨ ( P ∧ Q ) ⇔ P P\vee (P \wedge Q) \Leftrightarrow P P∨(P∧Q)⇔P | E 13 E_{13} E13 |
蕴含律 | P → Q ⇔ ¬ P ∨ Q P \to Q \Leftrightarrow \lnot P \vee Q P→Q⇔¬P∨Q | E 14 E_{14} E14 |
双条件律 | P ↔ Q ⇔ ( P → Q ) ∧ ( Q → P ) P \leftrightarrow Q \Leftrightarrow (P \to Q) \wedge (Q \to P) P↔Q⇔(P→Q)∧(Q→P) | E 15 E_{15} E15 |
零律 | P ∧ F ⇔ F P \wedge F \Leftrightarrow F P∧F⇔F | E 16 E_{16} E16 |
零律 | P ∨ T ⇔ T P \vee T \Leftrightarrow T P∨T⇔T | E 17 E_{17} E17 |
同一律 | P ∧ T ⇔ P P \wedge T \Leftrightarrow P P∧T⇔P | E 18 E_{18} E18 |
同一律 | P ∨ F ⇔ P P \vee F \Leftrightarrow P P∨F⇔P | E 19 E_{19} E19 |
矛盾律 | P ∧ ¬ P ⇔ F P \wedge \lnot P \Leftrightarrow F P∧¬P⇔F | E 20 E_{20} E20 |
排中律 | P ∨ ¬ P ⇔ T P\vee \lnot P \Leftrightarrow T P∨¬P⇔T | E 21 E_{21} E21 |
输出律 | ( P ∧ Q ) → R ⇔ P → ( Q → R ) (P\wedge Q) \to R \Leftrightarrow P \to (Q\to R) (P∧Q)→R⇔P→(Q→R) | E 22 E_{22} E22 |
归谬律 | ( P → Q ) ∧ ( P → ¬ Q ) ⇔ ¬ P (P \to Q) \wedge (P \to \lnot Q) \Leftrightarrow \lnot P (P→Q)∧(P→¬Q)⇔¬P | E 23 E_{23} E23 |
逆反律 | P → Q ⇔ ¬ Q → ¬ P P \to Q \Leftrightarrow \lnot Q \to \lnot P P→Q⇔¬Q→¬P | E 24 E_{24} E24 |
在【离散数学】数理逻辑 第一章 命题逻辑(5) 对偶式、对偶原理中我们会看到,为什么大部分逻辑等价式都成对出现,不同的只是 ∧ , ∨ \land, \lor ∧,∨ 互换、 T , F T, F T,F 互换(对偶特征和对偶原理)。在[【离散数学】数理逻辑 第一章 命题逻辑(7) 命题逻辑的推理理论]中我们会看到,输出律被用作CP规则法。
3.1.3 代入规则、替换规则、传递规则
为什么我们可以用基本恒等式来证明,两个命题公式 A A A、 B B B 是否等价呢?因为有等价变换的方法。
-
代入规则:设 A , B A, B A,B 是命题公式,其中 A A A 是重言式, P P P 是 A A A 中的命题变元。如果将 A A A 中所有 P P P 均用 B B B 代入,则所得命题公式仍然是一个重言式。这条规则之所以正确,是由于重言式的值不依赖于变元的值。
例子:由于 A ∨ ¬ A A\vee \lnot A A∨¬A 为重言式,则用 ( P → Q ) ∧ R (P \to Q)\wedge R (P→Q)∧R 代入 A A A,所得的公式 ( ( P → Q ) ∧ R ) ∨ ¬ ( ( P → Q ) ∧ R ) ((P\to Q) \wedge R) \vee \lnot ((P\to Q) \wedge R) ((P→Q)∧R)∨¬((P→Q)∧R) 也是重言式。 -
代入规则的推论:设 A , B , C A, B, C A,B,C 是命题公式,且 A ⇔ B A\Leftrightarrow B A⇔B , P P P 为出现在 A A A 和 B B B 中的命题变元。如果将 A A A 和 B B B 中所有 P P P 均用 C C C 代入,分别得到 A ′ , B ′ A', B' A′,B′ ,则有 A ′ ⇔ B ′ A'\Leftrightarrow B' A′⇔B′ 。
-
根据代入规则及其推论,我们可以从基本恒等式(和永真蕴含式)中导出无穷多的恒等式(和永真蕴含式)。
-
替换规则:设 A , X , Y A, X, Y A,X,Y 是命题公式, X X X 是 A A A 的子公式,且有 X ⇔ Y X \Leftrightarrow Y X⇔Y。如果将 A A A 中的 X X X 用 Y Y Y 来替换(不必每一处都替换),则所得的公式 B B B 与 A A A 等价,即 A ⇔ B A\Leftrightarrow B A⇔B 。这条规则之所以正确,是由于对相应变元的任一种赋值, X X X 与 Y Y Y 真值相同,故以 Y Y Y 取代 X X X 后, B B B 在相应赋值下真值与 A A A 相同,所以 B ⇔ A B \Leftrightarrow A B⇔A 。
-
传递规则:设命题 A , B , C A, B, C A,B,C 是命题公式,若 A ⇔ B A\Leftrightarrow B A⇔B 且 B ⇔ C B\Leftrightarrow C B⇔C ,则有 A ⇔ C A\Leftrightarrow C A⇔C 。
证明:因为 A ⇔ B A \Leftrightarrow B A⇔B、 B ⇔ C B\Leftrightarrow C B⇔C ,故 A ↔ B A\leftrightarrow B A↔B 永真, B ↔ C B\leftrightarrow C B↔C 永真,所以 A ↔ C A\leftrightarrow C A↔C 永真,从而 A ⇔ C A\Leftrightarrow C A⇔C 。
现在回过头来看,对这三条规则进行总结:
- 代入规则:
- 目标对象:主要针对永真式,针对的是某个永真的命题公式 A A A ;
- 具体操作:对永真命题公式中某个命题变元 P P P 进行代入(即全替换);
- 操作结果:代入后所得命题公式仍然是永真式。
- 利用:重言式的值不依赖于变元的值。
- 代入规则的推论:
- 目标对象:主要针对逻辑等价式,针对的是某个恒等式 A ⇔ B A \Leftrightarrow B A⇔B ;
- 具体操作:对两个逻辑等价的命题公式 A , B A, B A,B 中的某个命题变元 P P P 进行代入(即全替换);
- 操作结果:代入后所得的两个命题公式 A ′ , B ′ A', B' A′,B′ 仍然满足 A ′ ⇔ B ′ A' \Leftrightarrow B' A′⇔B′ ,仍是逻辑等价式。
- 利用:逻辑等价式的定义和代入规则—— A ⇔ B A \Leftrightarrow B A⇔B 当且仅当 A ↔ B A\leftrightarrow B A↔B 是永真式,于是对永真式 A ↔ B A\leftrightarrow B A↔B 中的所有 P P P 进行代入,所得结果 A ′ ↔ B ′ A' \leftrightarrow B' A′↔B′ 仍然是永真式,于是 A ′ ⇔ B ′ A'\Leftrightarrow B' A′⇔B′ 是逻辑等价式。
- 替换规则:
- 目标对象:针对所有命题公式及其子公式,无论是永真式、矛盾式或偶然式;
- 具体操作:对三个命题公式 A , X , Y A, X, Y A,X,Y 且 X X X 是 A A A 的子公式、 X ⇔ Y X \Leftrightarrow Y X⇔Y ,将 A A A 中的部分或全部 X X X 用 Y Y Y 来替换;
- 操作结果:所得命题公式 B B B 与 A A A 等价,即 B ⇔ A B \Leftrightarrow A B⇔A ;
- 利用:逻辑等价式的定义——对于任一赋值, X X X 和 Y Y Y 的真值相同,所以 A A A 和 B B B 的真值也相同。
- 传递规则:
- 目标对象:针对所有的命题公式,无论是永真式、矛盾式或偶然式;
- 具体性质:三个命题公式 A , B , C A, B, C A,B,C, 若 A ⇔ B A\Leftrightarrow B A⇔B 且 B ⇔ C B\Leftrightarrow C B⇔C ,则 A ⇔ C A\Leftrightarrow C A⇔C
- 利用:逻辑等价式的定义——因为 A ⇔ B A \Leftrightarrow B A⇔B、 B ⇔ C B\Leftrightarrow C B⇔C ,故对于任一赋值, A A A 和 B B B 的真值相同、 B B B 和 C C C 的真值相同,从而 A A A 和 C C C 的真值相同, 所以 A ⇔ C A\Leftrightarrow C A⇔C
它们的用途也不一样:
- 代入规则及其推论:使用代入规则,可以不断代入命题公式到永真式(包括基本逻辑等价式、永真蕴含式等代表的永真式)中的命题变元,从而推出无穷无尽的永真式;使用其推论,可以代入命题公式到逻辑等价式中的命题变元,从而推出无穷无尽的恒等式。
- 替换规则和传递规则:用于等价推演,即验证两个命题是否等价。具体来说,是对两个命题公式
A
,
B
A, B
A,B 中的一个(通常是前者),如对
A
A
A 的子公式反复使用逻辑等价的命题公式替换(替换规则),得到一系列等价的命题,最后替换得到
B
B
B ,即有
A
⇔
A
1
⇔
A
2
⇔
⋯
⇔
B
A \Leftrightarrow A_1 \Leftrightarrow A_2 \Leftrightarrow \dots \Leftrightarrow B
A⇔A1⇔A2⇔⋯⇔B,从而证明
A
⇔
B
A \Leftrightarrow B
A⇔B(传递规则)。
和真值表+逻辑等价式定义一样,是一种证明命题等价的方法,只是前者用于变元较少时,等价推演用于变元较多的情况。
一个示例:证明
(
P
→
Q
)
→
(
Q
∨
R
)
⇔
P
∨
Q
∨
R
(P\to Q) \to (Q\vee R) \Leftrightarrow P\vee Q \vee R
(P→Q)→(Q∨R)⇔P∨Q∨R 。
解答:
(
P
→
Q
)
→
(
Q
∨
R
)
⇔
(
¬
P
∨
Q
)
→
(
Q
∨
R
)
蕴
含
律
和
替
换
规
则
⇔
¬
(
¬
P
∨
Q
)
∨
(
Q
∨
R
)
蕴
含
律
和
替
换
规
则
⇔
(
P
∧
¬
Q
)
∨
(
Q
∨
R
)
德
摩
根
律
,
对
合
律
和
替
换
规
则
⇔
(
(
P
∧
¬
Q
)
∨
Q
)
∨
R
结
合
律
和
替
换
规
则
⇔
(
(
P
∨
Q
)
∧
(
¬
Q
∨
Q
)
)
∨
R
分
配
律
和
替
换
规
则
⇔
(
(
P
∨
Q
)
∧
T
)
∨
R
排
中
律
和
替
换
规
则
⇔
P
∨
Q
∨
R
同
一
律
和
替
换
规
则
\begin{aligned} &(P\to Q) \to (Q\vee R) \\ &\Leftrightarrow (\lnot P\vee Q) \to (Q \vee R) \quad &蕴含律和替换规则\\ &\Leftrightarrow \lnot (\lnot P\vee Q) \vee (Q\vee R) \quad &蕴含律和替换规则 \\ &\Leftrightarrow (P\wedge \lnot Q) \vee (Q\vee R) \quad &德摩根律,对合律和替换规则 \\ &\Leftrightarrow ((P\wedge \lnot Q) \vee Q) \vee R \quad &结合律和替换规则\\ &\Leftrightarrow ((P\vee Q) \wedge (\lnot Q\vee Q)) \vee R \quad &分配律和替换规则\\ &\Leftrightarrow ((P\vee Q) \wedge T) \vee R \quad &排中律和替换规则\\ &\Leftrightarrow P\vee Q \vee R \quad &同一律和替换规则 \end{aligned}
(P→Q)→(Q∨R)⇔(¬P∨Q)→(Q∨R)⇔¬(¬P∨Q)∨(Q∨R)⇔(P∧¬Q)∨(Q∨R)⇔((P∧¬Q)∨Q)∨R⇔((P∨Q)∧(¬Q∨Q))∨R⇔((P∨Q)∧T)∨R⇔P∨Q∨R蕴含律和替换规则蕴含律和替换规则德摩根律,对合律和替换规则结合律和替换规则分配律和替换规则排中律和替换规则同一律和替换规则
3.2 蕴含
3.2.1 蕴含 implicate
给定两个命题公式
A
A
A 和
B
B
B ,如果
A
→
B
A\to B
A→B 是一个重言式,则称
A
A
A 蕴含 implicate
B
B
B ,记作
A
⇒
B
A\Rightarrow B
A⇒B 。(这回书上不写什么设
P
1
,
P
2
,
…
,
P
n
P_1, P_2, \dots, P_n
P1,P2,…,Pn 为所有出现在
A
A
A 和
B
B
B 中的命题变元……这些东西了-_-||)。类似
A
⇒
B
A\Rightarrow B
A⇒B 的式子,被称作永真蕴含式。
⇒ \Rightarrow ⇒ 和 → \rightarrow → 的区别在于:
- ⇒ \Rightarrow ⇒ 表示两个命题公式之间的关系,即表示 A A A 和 B B B 有蕴含这个关系。 A ⇒ B A\Rightarrow B A⇒B 不是命题公式。
- → \to → 是表示条件的逻辑联结词,通过 → \to → 联结起来的两个命题公式将形成一个命题公式, A → B A\to B A→B 是命题公式。
⇒ \Rightarrow ⇒ 和 → \to → 的联系在于定义——若对于任一赋值, A → B A \to B A→B 的真值都为 T T T ,即 A → B A\to B A→B 为重言式,则有 A ⇒ B A\Rightarrow B A⇒B 。这一联系常被用于证明某个命题公式 A A A 蕴含 B B B(使用真值表)。写作定理是:设 A , B A, B A,B 是命题公式,则 A A A 蕴含 B B B 当且仅当 A → B A \to B A→B 是一个重言式。
3.2.2 常用永真蕴含式
除了真值表法(对任一赋值, A → B A\to B A→B 真值都为 T T T)外,我们还可以用基本恒等式和永真蕴含式来证明新的蕴含式。下面列出21个常见的永真蕴含式,这些蕴含式都可以通过构造真值表进行验证:
定律 | 定律描述 | 定律代号 |
---|---|---|
直推式 | P ⇒ P P \Rightarrow P P⇒P | I 1 I_1 I1 |
化简式 | P ∧ Q ⇒ P P \wedge Q \Rightarrow P P∧Q⇒P | I 2 I_2 I2 |
化简式 | P ∧ Q ⇒ Q P\wedge Q \Rightarrow Q P∧Q⇒Q | I 3 I_3 I3 |
附加式 | P ⇒ P ∨ Q P \Rightarrow P\vee Q P⇒P∨Q | I 4 I_4 I4 |
附加式 | Q ⇒ P ∨ Q Q \Rightarrow P\vee Q Q⇒P∨Q | I 5 I_5 I5 |
变形附加式 | ¬ P ⇒ P → Q \lnot P \Rightarrow P \to Q ¬P⇒P→Q | I 6 I_6 I6 |
变形附加式 | Q ⇒ P → Q Q \Rightarrow P \to Q Q⇒P→Q | I 7 I_7 I7 |
变形附加式 | ¬ ( P → Q ) ⇒ P \lnot (P\to Q) \Rightarrow P ¬(P→Q)⇒P | I 8 I_8 I8 |
变形附加式 | ¬ ( P → Q ) ⇒ ¬ Q \lnot(P\to Q) \Rightarrow \lnot Q ¬(P→Q)⇒¬Q | I 9 I_9 I9 |
假言推理 | P ∧ ( P → Q ) ⇒ Q P \wedge (P\to Q) \Rightarrow Q P∧(P→Q)⇒Q | I 10 I_{10} I10 |
拒取式 | ¬ Q ∧ ( P → Q ) ⇒ ¬ P \lnot Q\wedge (P\to Q) \Rightarrow \lnot P ¬Q∧(P→Q)⇒¬P | I 11 I_{11} I11 |
析取三段论 | ¬ P ∧ ( P ∨ Q ) ⇒ Q \lnot P \wedge (P \vee Q) \Rightarrow Q ¬P∧(P∨Q)⇒Q | I 12 I_{12} I12 |
前提三段论 | ( P → Q ) ∧ ( Q → R ) ⇒ P → R (P\to Q) \wedge (Q\to R) \Rightarrow P \to R (P→Q)∧(Q→R)⇒P→R | I 13 I_{13} I13 |
构造性二难推理 | ( P ∨ Q ) ∧ ( P → R ) ∧ ( Q → S ) ⇒ ( R ∨ S ) (P\vee Q) \wedge (P\to R) \wedge (Q\to S) \Rightarrow (R\vee S) (P∨Q)∧(P→R)∧(Q→S)⇒(R∨S) | I 14 I_{14} I14 |
破坏性二难推理 | ( ¬ R ∨ ¬ S ) ∧ ( P → R ) ∧ ( Q → S ) ⇒ ( ¬ P ∨ ¬ Q ) (\lnot R\vee \lnot S) \wedge (P\to R) \wedge (Q\to S) \Rightarrow (\lnot P \vee \lnot Q) (¬R∨¬S)∧(P→R)∧(Q→S)⇒(¬P∨¬Q) | I 15 I_{15} I15 |
合取二难推理 | ( P ∧ Q ) ∧ ( P → R ) ∧ ( Q → S ) ⇒ R ∧ S (P\wedge Q) \wedge (P\to R) \wedge (Q\to S) \Rightarrow R\wedge S (P∧Q)∧(P→R)∧(Q→S)⇒R∧S | I 16 I_{16} I16 |
逆条件附加 | ( P → Q ) ⇒ ( Q → R ) → ( P → R ) (P\to Q) \Rightarrow (Q\to R) \to (P \to R) (P→Q)⇒(Q→R)→(P→R) | I 17 I_{17} I17 |
条件归并 | ( P → Q ) ∧ ( R → S ) ⇒ ( P ∧ R ) → ( Q ∧ S ) (P \to Q) \wedge (R\to S) \Rightarrow (P\wedge R) \to (Q\wedge S) (P→Q)∧(R→S)⇒(P∧R)→(Q∧S) | I 18 I_{18} I18 |
双条件三段论 | ( P ↔ Q ) ∧ ( Q ↔ R ) ⇒ ( P ↔ R ) (P\leftrightarrow Q) \wedge (Q\leftrightarrow R) \Rightarrow (P \leftrightarrow R) (P↔Q)∧(Q↔R)⇒(P↔R) | I 19 I_{19} I19 |
前后件附加 | P → Q ⇒ ( P ∨ R ) → ( Q ∨ R ) P\to Q \Rightarrow (P\vee R) \to (Q\vee R) P→Q⇒(P∨R)→(Q∨R) | I 20 I_{20} I20 |
前后件附加 | P → Q ⇒ ( P ∧ R ) → ( Q ∧ R ) P\to Q \Rightarrow (P\wedge R) \to (Q\wedge R) P→Q⇒(P∧R)→(Q∧R) | I 21 I_{21} I21 |
3.2.3 蕴含关系的常用性质、与等价关系的联系
定理:设
A
,
B
A, B
A,B 是任意两个命题公式,
A
⇔
B
A\Leftrightarrow B
A⇔B 当且仅当
A
⇒
B
A \Rightarrow B
A⇒B 且
B
⇒
A
B\Rightarrow A
B⇒A 。
证明:
- 充分性:由于 A ⇔ B A \Leftrightarrow B A⇔B ,则 A ↔ B A\leftrightarrow B A↔B 为重言式。因为 A ↔ B ⇔ ( A → B ) ∧ ( B → A ) A \leftrightarrow B \Leftrightarrow (A \to B) \wedge (B \to A) A↔B⇔(A→B)∧(B→A)(双条件律),所以 A → B A\to B A→B 为 T T T 且 B → A B \to A B→A 为 T T T ,即 A ⇒ B A\Rightarrow B A⇒B 并且 B ⇒ A B\Rightarrow A B⇒A 。
- 必要性:假设 A ⇒ B A \Rightarrow B A⇒B 且 B ⇒ A B \Rightarrow A B⇒A ,则 A → B A\to B A→B 为 T T T 且 B → A B \to A B→A 为 T T T ,所以 A ↔ B A\leftrightarrow B A↔B 为 T T T 为重言式,则有 A ⇔ B A\Leftrightarrow B A⇔B 。
这一定理揭示了蕴含关系和等价关系间紧密的联系,也能得到证明两个命题公式等价的又一种方法,即证明两个命题公式相互蕴含。
蕴含关系常用的几个性质:
- 性质1:设
A
,
B
,
C
A, B, C
A,B,C 都是命题公式,如果
A
⇒
B
A\Rightarrow B
A⇒B 并且
A
A
A 是重言式,则
B
B
B 也是重言式。
证明:由于 A ⇒ B A \Rightarrow B A⇒B 即 A → B A \to B A→B 是重言式,并且 A A A 是重言式,根据条件联结词的性质, B B B 也是重言式。 - 性质2:如果
A
⇒
B
A\Rightarrow B
A⇒B 并且
B
⇒
C
B\Rightarrow C
B⇒C ,则
A
⇒
C
A\Rightarrow C
A⇒C ,即蕴含关系和等价关系一样可以传递。
证明:如果 A ⇒ B A\Rightarrow B A⇒B 且 B ⇒ C B\Rightarrow C B⇒C ,则 A → B A\to B A→B、 B → C B\to C B→C 是重言式。利用前提三段论 ( A → B ) ∧ ( B → C ) ⇒ A → C (A \to B) \wedge (B\to C) \Rightarrow A \to C (A→B)∧(B→C)⇒A→C 和性质1,可知 A → C A \to C A→C 也是重言式,所以 A ⇒ C A\Rightarrow C A⇒C 。 - 性质3:如果
A
⇒
B
A \Rightarrow B
A⇒B 且
A
⇒
C
A\Rightarrow C
A⇒C ,则
A
⇒
B
∧
C
A\Rightarrow B \wedge C
A⇒B∧C 。
证明:如果 A ⇒ B A\Rightarrow B A⇒B 且 A ⇒ C A\Rightarrow C A⇒C ,则 A → B A\to B A→B、 A → C A\to C A→C 是重言式。利用肯定前件法,设 A A A 为 T T T ,则 B , C B, C B,C 为 T T T ,从而 B ∧ C B \wedge C B∧C 为 T T T ,即有 A ⇒ B ∧ C A \Rightarrow B\wedge C A⇒B∧C 。 - 性质4:如果
A
⇒
C
A \Rightarrow C
A⇒C 且
B
⇒
C
B\Rightarrow C
B⇒C ,则
A
∨
B
⇒
C
A\vee B \Rightarrow C
A∨B⇒C 。
证明:如果 A ⇒ C A\Rightarrow C A⇒C 且 B ⇒ C B\Rightarrow C B⇒C ,则 A → C A\to C A→C、 B → C B\to C B→C 是重言式。利用否定后件法,设 C C C 为 F F F ,则 A , B A, B A,B 为 F F F ,从而 A ∨ B A \vee B A∨B 为 F F F ,即有 A ∨ B ⇒ C A\vee B \Rightarrow C A∨B⇒C 。
这其中最重要的是性质2,类似于等价关系的传递规则。
3.3 逻辑等价和蕴含式证明思路总结
第一种也是最简单的一种,从定义出发:
- 要证明 A ⇔ B A \Leftrightarrow B A⇔B ,就要证明对任一赋值, A , B A, B A,B 的真值相同,即证明 A ↔ B A\leftrightarrow B A↔B 是重言式。
- 要证明 A ⇒ B A\Rightarrow B A⇒B ,就要证明 A → B A\to B A→B 是重言式。
- 具体方法:
- 可以用真值表证明对任一赋值, A ↔ B A\leftrightarrow B A↔B、 A → B A\to B A→B 的真值恒为 T T T ;
- 或者运用等价推演方法,不断对命题公式 A ↔ B A\leftrightarrow B A↔B、 A → B A\to B A→B 中的子公式使用逻辑等价的命题公式进行替换(替换规则),从而得到一系列等价的命题(用 ⇔ \Leftrightarrow ⇔ 串联起来),最终替换得到 A ↔ B ⇔ T A \leftrightarrow B \Leftrightarrow T A↔B⇔T 、 A → B ⇔ T A\to B \Leftrightarrow T A→B⇔T(传递规则)。因此 A ↔ B A\leftrightarrow B A↔B、 A → B A\to B A→B 是重言式, A ⇔ B A \Leftrightarrow B A⇔B 、 A ⇒ B A\Rightarrow B A⇒B 得证。
第二种也是运用等价推演方法,只是对逻辑等价关系和蕴含关系的做法不一样:
- 要证明 A ⇔ B A \Leftrightarrow B A⇔B ,就要对两个命题公式中的一个,如对 A A A 的子公式反复使用逻辑等价的命题公式替换(替换规则),得到一系列等价的命题(用 ⇔ \Leftrightarrow ⇔ 串联起来),最后替换得到 B B B ,即有 A ⇔ A 1 ⇔ A 2 ⇔ ⋯ ⇔ B A \Leftrightarrow A_1 \Leftrightarrow A_2 \Leftrightarrow \dots \Leftrightarrow B A⇔A1⇔A2⇔⋯⇔B ,从而证明 A ⇔ B A \Leftrightarrow B A⇔B(传递规则)。
- 要证明 A ⇒ B A\Rightarrow B A⇒B ,就要对命题公式 A A A 的子公式反复使用逻辑等价的命题公式和永真蕴含式进行替换(替换规则和永真蕴含式的推导规则),得到一系列或等价或蕴含的命题(用 ⇒ \Rightarrow ⇒ 串联起来),最后替换得到 B B B ,即有 A ⇒ A 1 ⇒ ⋯ ⇒ B A \Rightarrow A_1 \Rightarrow \dots \Rightarrow B A⇒A1⇒⋯⇒B ,从而证明 A ⇒ B A \Rightarrow B A⇒B(蕴含关系的传递性)。
一个示例:证明
¬
Q
∧
(
P
→
Q
)
⇒
¬
P
\lnot Q \wedge (P\to Q) \Rightarrow \lnot P
¬Q∧(P→Q)⇒¬P 。
解答:
¬
Q
∧
(
P
→
Q
)
⇒
¬
Q
∧
(
¬
P
∨
Q
)
蕴
含
律
和
替
换
规
则
⇒
(
¬
Q
∧
¬
P
)
∨
(
¬
Q
∧
Q
)
分
配
律
和
替
换
规
则
⇒
(
¬
Q
∧
¬
P
)
∨
F
矛
盾
律
和
替
换
规
则
⇒
¬
Q
∧
¬
P
同
一
律
和
替
换
规
则
⇒
¬
P
化
简
式
\begin{aligned} &\lnot Q \wedge (P\to Q) \\ &\Rightarrow \lnot Q\wedge (\lnot P\vee Q) \quad &蕴含律和替换规则\\ &\Rightarrow (\lnot Q \wedge \lnot P) \vee (\lnot Q\wedge Q) \quad &分配律和替换规则\\ &\Rightarrow (\lnot Q \wedge \lnot P) \vee F \quad &矛盾律和替换规则\\ &\Rightarrow \lnot Q \wedge \lnot P \quad &同一律和替换规则\\ &\Rightarrow \lnot P \quad &化简式\\ \end{aligned}
¬Q∧(P→Q)⇒¬Q∧(¬P∨Q)⇒(¬Q∧¬P)∨(¬Q∧Q)⇒(¬Q∧¬P)∨F⇒¬Q∧¬P⇒¬P蕴含律和替换规则分配律和替换规则矛盾律和替换规则同一律和替换规则化简式
逻辑等价关系的第三种证明方法,就是证明两个命题公式相互蕴含,很少用的一种证明方法。蕴含关系的第三种证明方法:
- 肯定前件法:假设 A A A 为 T T T ,如果能推出 B B B 为 T T T ,则 A ⇒ B A \Rightarrow B A⇒B 。
- 否定后件法:假设 B B B 为 F F F ,如果能推出 A A A 为 F F F ,则 A ⇒ B A\Rightarrow B A⇒B 。