本文属于「离散数学」系列文章之一。这一系列着重于离散数学的学习和应用。由于内容随时可能发生更新变动,欢迎关注和收藏离散数学系列文章汇总目录一文以作备忘。此外,在本系列学习文章中,为了透彻理解离散数学,本人参考了诸多博客、教程、文档、书籍等资料。以下是本文的不完全参考目录,在后续学习中还会逐渐补充:
- (国外经典教材)离散数学及其应用 第七版
Discrete Mathematics and Its Applications 7th
,作者是Kenneth H.Rosen
,袁崇义译,机械工业出版社- 离散数学 第二版,武波等编著,西安电子科技大学出版社,2006年
- 离散数学 第三版,方世昌等编著,西安电子科技大学出版社,2013年
- (经典参考书及其题解)离散数学/离散数学——理论•分析•题解,左孝凌、李为鉴、刘永才编著,上海科学技术文献出版社
- 离散数学习题集:数理逻辑与集合论分册,耿素云;图论分册,耿素云;抽象代数分册, 张立昂。北京大学出版社
文章目录
3. 逻辑等价与蕴含、谓词演算的永真公式
3.1 谓词逻辑的逻辑等价与蕴含
定义3.1.1 给定任意两个谓词公式 A A A 和 B B B ,若对于任何赋值, A A A 和 B B B 的真值均相同,则称谓词公式 A A A 和 B B B 等价,记为 A ⇔ B A\Leftrightarrow B A⇔B 。
定义3.1.2 给定任意两个谓词公式 A A A 和 B B B ,若 A → B A\to B A→B 是永真式,则称 A A A 蕴含 B B B ,记为 A ⇒ B A \Rightarrow B A⇒B 。
类似于命题逻辑的逻辑等价与蕴含,对于谓词公式 A , B , C A, B, C A,B,C ,有如下结论:
- A ⇔ B A \Leftrightarrow B A⇔B 当且仅当 A ↔ B A \leftrightarrow B A↔B 是重言式。
- A ⇔ B A \Leftrightarrow B A⇔B 当且仅当 A ⇒ B A \Rightarrow B A⇒B 且 B ⇒ A B \Rightarrow A B⇒A 。
- A ⇔ B A \Leftrightarrow B A⇔B 且 B ⇔ C B \Leftrightarrow C B⇔C ,则 A ⇔ C A \Leftrightarrow C A⇔C(谓词逻辑等价关系的传递规则)。
- A ⇒ B A \Rightarrow B A⇒B 且 B ⇒ C B \Rightarrow C B⇒C ,则 A ⇒ C A \Rightarrow C A⇒C(谓词逻辑蕴含关系的传递规则)。
命题逻辑中的代入规则、替换规则,在谓词逻辑中同样适用。
3.2 谓词演算的永真公式
3.2.1 命题逻辑的等价式和蕴含式在谓词逻辑中的推广应用
对于命题逻辑中的任一等价/蕴含公式,对其应用代入规则,即用谓词逻辑的任意公式代入命题逻辑等价/蕴含公式中的某个命题变元,所得结果是谓词逻辑的一个等价/蕴含公式。例如,对 E 10 E_{10} E10 德摩根律 ¬ ( A ∧ B ) ⇔ ¬ A ∨ ¬ B \lnot (A \land B) \Leftrightarrow \lnot A \lor \lnot B ¬(A∧B)⇔¬A∨¬B ,用 ∀ x P ( x ) \forall xP(x) ∀xP(x) 代入 A A A 、 ∃ x Q ( x ) \exist xQ(x) ∃xQ(x) 代入 B B B ,则有 ¬ ( ∀ x P ( x ) ∧ ∃ x Q ( x ) ) ⇔ ¬ ∀ x P ( x ) ∨ ¬ ∃ x Q ( x ) \lnot (\forall xP(x) \land \exist xQ(x)) \Leftrightarrow \lnot \forall xP(x) \lor \lnot \exist xQ(x) ¬(∀xP(x)∧∃xQ(x))⇔¬∀xP(x)∨¬∃xQ(x)
3.2.2 量词的否定律
量词的否定律(2个公式),说明全称量词和存在量词可以相互表达。
¬
∀
x
P
(
x
)
⇔
∃
x
¬
P
(
x
)
¬
∃
x
P
(
x
)
⇔
∀
x
¬
P
(
x
)
\begin{aligned} &\lnot \forall xP(x) \Leftrightarrow \exist x\lnot P(x)\\ &\lnot \exist xP(x) \Leftrightarrow \forall x\lnot P(x) \end{aligned}
¬∀xP(x)⇔∃x¬P(x)¬∃xP(x)⇔∀x¬P(x)
证明:
(1)设论域为
D
D
D ,
t
t
t 是任一赋值。
- 如果 t t t 使得 ¬ ∀ x P ( x ) \lnot \forall xP(x) ¬∀xP(x) 为真,则 t t t 使得 ∀ x P ( x ) \forall xP(x) ∀xP(x) 为假,即存在个体 a ∈ D a \in D a∈D 使得 P ( a ) P(a) P(a) 为假,从而有 ¬ P ( a ) \lnot P(a) ¬P(a) 为真,故有 ∃ x ¬ P ( x ) \exist x\lnot P(x) ∃x¬P(x) 为真。
- 如果 t t t 使得 ¬ ∀ x P ( x ) \lnot \forall xP(x) ¬∀xP(x) 为假,则 t t t 使得 ∀ x P ( x ) \forall xP(x) ∀xP(x) 为真,即对于任一个体 a ∈ D a \in D a∈D ,均有 P ( a ) P(a) P(a) 为真,从而有 ¬ P ( a ) \lnot P(a) ¬P(a) 为假,故有 ∃ x ¬ P ( x ) \exist x\lnot P(x) ∃x¬P(x) 为假。
- 综上所述, ¬ ∀ x P ( x ) ⇔ ∃ x ¬ P ( x ) \lnot \forall xP(x) \Leftrightarrow \exist x\lnot P(x) ¬∀xP(x)⇔∃x¬P(x) 成立。
- 再给出等价公式
¬
∀
x
P
(
x
)
⇔
∃
x
¬
P
(
x
)
\lnot \forall xP(x) \Leftrightarrow \exist x\lnot P(x)
¬∀xP(x)⇔∃x¬P(x) 在一个有限论域上的证明。设有限论域为
D
=
{
a
1
,
a
2
,
…
,
a
n
}
D = \{ a_1, a_2, \dots, a_n\}
D={a1,a2,…,an} ,则对某个个体变元
x
x
x 的量化可以用命题形式表示,于是有:
¬ ∀ x P ( x ) ⇔ ¬ ( P ( a 1 ) ∧ P ( a 2 ) ∧ ⋯ ∧ P ( a n ) ) ⇔ ¬ P ( a 1 ) ∨ ¬ P ( a 2 ) ∨ ⋯ ∨ ¬ P ( a n ) ⇔ ∃ x ¬ P ( x ) \begin{aligned} \lnot \forall xP(x) &\Leftrightarrow \lnot (P(a_1) \land P(a_2) \land \dots \land P(a_n)) \\ &\Leftrightarrow \lnot P(a_1) \lor \lnot P(a_2) \lor \dots \lor \lnot P(a_n) \\ &\Leftrightarrow \exist x\lnot P(x) \end{aligned} ¬∀xP(x)⇔¬(P(a1)∧P(a2)∧⋯∧P(an))⇔¬P(a1)∨¬P(a2)∨⋯∨¬P(an)⇔∃x¬P(x)
(2)设论域为 D D D , t t t 是任一赋值。
- 如果 t t t 使得 ¬ ∃ x P ( x ) \lnot \exist xP(x) ¬∃xP(x) 为真,则 t t t 使得 ∃ x P ( x ) \exist xP(x) ∃xP(x) 为假,即对于任一个体 a ∈ D a \in D a∈D ,均有 P ( a ) P(a) P(a) 为假,从而有 ¬ P ( a ) \lnot P(a) ¬P(a) 为真,故有 ∀ x ¬ P ( x ) \forall x\lnot P(x) ∀x¬P(x) 为真。
- 如果 t t t 使得 ¬ ∃ x P ( x ) \lnot \exist xP(x) ¬∃xP(x) 为假,则 t t t 使得 ∃ x P ( x ) \exist xP(x) ∃xP(x) 为真,即存在个体 a ∈ D a \in D a∈D 使得 P ( a ) P(a) P(a) 为真,从而 ¬ P ( a ) \lnot P(a) ¬P(a) 为假,故有 ∀ x ¬ P ( x ) \forall x\lnot P(x) ∀x¬P(x) 为假。
- 综上所述, ¬ ∃ x P ( x ) ⇔ ∀ x ¬ P ( x ) \lnot \exist xP(x) \Leftrightarrow \forall x\lnot P(x) ¬∃xP(x)⇔∀x¬P(x) 成立。
- 再给出等价公式
¬
∃
x
P
(
x
)
⇔
∀
x
¬
P
(
x
)
\lnot \exist xP(x) \Leftrightarrow \forall x\lnot P(x)
¬∃xP(x)⇔∀x¬P(x) 在一个有限论域上的证明。设有限论域为
D
=
{
a
1
,
a
2
,
…
,
a
n
}
D = \{ a_1, a_2, \dots, a_n\}
D={a1,a2,…,an} ,则对某个个体变元
x
x
x 的量化可以用命题形式表示,于是有:
¬ ∃ x P ( x ) ⇔ ¬ ( P ( a 1 ) ∨ P ( a 2 ) ∨ ⋯ ∨ P ( a n ) ) ⇔ ¬ P ( a 1 ) ∧ ¬ P ( a 2 ) ∧ ⋯ ∧ ¬ P ( a n ) ⇔ ∀ x ¬ P ( x ) \begin{aligned} \lnot \exist xP(x)&\Leftrightarrow \lnot (P(a_1) \lor P(a_2) \lor \dots \lor P(a_n)) \\ &\Leftrightarrow \lnot P(a_1) \land \lnot P(a_2) \land \dots \land \lnot P(a_n) \\ &\Leftrightarrow \forall x\lnot P(x) \end{aligned} ¬∃xP(x)⇔¬(P(a1)∨P(a2)∨⋯∨P(an))⇔¬P(a1)∧¬P(a2)∧⋯∧¬P(an)⇔∀x¬P(x)
3.2.3 量词辖域的扩张与收缩律
设
P
(
x
)
P(x)
P(x) 是谓词公式,
Q
Q
Q 是不含自由变元
x
x
x 的谓词公式。于是有:
(1)
∀
x
(
P
(
x
)
∧
Q
)
)
⇔
∀
x
P
(
x
)
∧
Q
\forall x(P(x) \land Q)) \Leftrightarrow \forall xP(x) \land Q
∀x(P(x)∧Q))⇔∀xP(x)∧Q
(2)
∀
x
(
P
(
x
)
∨
Q
)
)
⇔
∀
x
P
(
x
)
∨
Q
\forall x(P(x) \lor Q)) \Leftrightarrow \forall xP(x) \lor Q
∀x(P(x)∨Q))⇔∀xP(x)∨Q
(3)
∃
x
(
P
(
x
)
∧
Q
)
⇔
∃
x
P
(
x
)
∧
Q
\exist x(P(x) \land Q) \Leftrightarrow \exist xP(x) \land Q
∃x(P(x)∧Q)⇔∃xP(x)∧Q
(4)
∃
x
(
P
(
x
)
∨
Q
)
⇔
∃
x
P
(
x
)
∨
Q
\exist x(P(x) \lor Q) \Leftrightarrow \exist xP(x) \lor Q
∃x(P(x)∨Q)⇔∃xP(x)∨Q
上面一组比较简单,下面一组比较复杂:
(5)
∃
x
P
(
x
)
→
Q
⇔
∀
x
(
P
(
x
)
→
Q
)
\exist xP(x) \to Q \Leftrightarrow \forall x(P(x) \to Q)
∃xP(x)→Q⇔∀x(P(x)→Q)
(6)
∀
x
P
(
x
)
→
Q
⇔
∃
x
(
P
(
x
)
→
Q
)
\forall xP(x) \to Q \Leftrightarrow \exist x(P(x) \to Q)
∀xP(x)→Q⇔∃x(P(x)→Q)
(7)
Q
→
∃
x
P
(
x
)
⇔
∃
x
(
Q
→
P
(
x
)
)
Q\to \exist xP(x) \Leftrightarrow \exist x(Q \to P(x))
Q→∃xP(x)⇔∃x(Q→P(x))
(8)
Q
→
∀
x
P
(
x
)
⇔
∀
x
(
Q
→
P
(
x
)
)
Q \to \forall xP(x) \Leftrightarrow \forall x(Q \to P(x))
Q→∀xP(x)⇔∀x(Q→P(x))
证明(5)
∃
x
P
(
x
)
→
Q
⇔
¬
∃
x
P
(
x
)
∨
Q
⇔
∀
x
¬
P
(
x
)
∨
Q
⇔
∀
x
(
¬
P
(
x
)
∨
Q
)
⇔
∀
x
(
P
(
x
)
→
Q
)
\begin{aligned} \exist xP(x) \to Q &\Leftrightarrow \lnot \exist xP(x) \lor Q \\ &\Leftrightarrow \forall x \lnot P(x) \lor Q \\ &\Leftrightarrow \forall x(\lnot P(x) \lor Q) \\ &\Leftrightarrow \forall x(P(x) \to Q)\end{aligned}
∃xP(x)→Q⇔¬∃xP(x)∨Q⇔∀x¬P(x)∨Q⇔∀x(¬P(x)∨Q)⇔∀x(P(x)→Q)
证明(6)
∀
x
P
(
x
)
→
Q
⇔
¬
∀
x
P
(
x
)
∨
Q
⇔
∃
x
¬
P
(
x
)
∨
Q
⇔
∃
x
(
¬
P
(
x
)
∨
Q
)
⇔
∃
x
(
P
(
x
)
→
Q
)
\begin{aligned} \forall xP(x) \to Q &\Leftrightarrow \lnot \forall xP(x) \lor Q \\ &\Leftrightarrow \exist x \lnot P(x) \lor Q \\ &\Leftrightarrow \exist x(\lnot P(x) \lor Q) \\ &\Leftrightarrow \exist x(P(x) \to Q)\end{aligned}
∀xP(x)→Q⇔¬∀xP(x)∨Q⇔∃x¬P(x)∨Q⇔∃x(¬P(x)∨Q)⇔∃x(P(x)→Q)
证明(7)
Q
→
∃
x
P
(
x
)
⇔
¬
Q
∨
∃
x
P
(
x
)
⇔
∃
x
(
P
(
x
)
∨
¬
Q
)
⇔
∃
x
(
Q
→
P
(
x
)
)
\begin{aligned} Q\to \exist xP(x) &\Leftrightarrow \lnot Q\lor \exist xP(x) \\ &\Leftrightarrow \exist x(P(x) \lor \lnot Q) \\ &\Leftrightarrow \exist x(Q \to P(x)) \end{aligned}
Q→∃xP(x)⇔¬Q∨∃xP(x)⇔∃x(P(x)∨¬Q)⇔∃x(Q→P(x))
证明(8)
Q
→
∀
x
P
(
x
)
⇔
¬
Q
∨
∀
x
P
(
x
)
⇔
∀
x
(
P
(
x
)
∨
¬
Q
)
⇔
∀
x
(
Q
→
P
(
x
)
)
\begin{aligned} Q\to \forall xP(x) &\Leftrightarrow \lnot Q \lor \forall xP(x) \\ &\Leftrightarrow \forall x(P(x) \lor \lnot Q) \\ &\Leftrightarrow \forall x(Q \to P(x)) \end{aligned}
Q→∀xP(x)⇔¬Q∨∀xP(x)⇔∀x(P(x)∨¬Q)⇔∀x(Q→P(x))
3.2.4 量词的分配律
有限论域中易证(1)和(2):
(1)
∀
x
(
P
(
x
)
∧
Q
(
x
)
)
⇔
∀
x
P
(
x
)
∧
∀
x
Q
(
x
)
\forall x(P(x) \land Q(x)) \Leftrightarrow \forall xP(x) \land \forall xQ(x)
∀x(P(x)∧Q(x))⇔∀xP(x)∧∀xQ(x)
(2)
∃
x
(
P
(
x
)
∨
Q
(
x
)
)
⇔
∃
x
P
(
x
)
∨
∃
x
Q
(
x
)
\exist x(P(x) \lor Q(x)) \Leftrightarrow \exist xP(x) \lor \exist xQ(x)
∃x(P(x)∨Q(x))⇔∃xP(x)∨∃xQ(x)
(3)
∀
x
P
(
x
)
∨
∀
x
Q
(
x
)
⇒
∀
x
(
P
(
x
)
∨
Q
(
x
)
)
\forall xP(x) \lor \forall xQ(x) \Rightarrow \forall x(P(x) \lor Q(x))
∀xP(x)∨∀xQ(x)⇒∀x(P(x)∨Q(x))
(4)
∃
x
(
P
(
x
)
∧
Q
(
x
)
)
⇒
∃
x
P
(
x
)
∧
∃
x
Q
(
x
)
\exist x(P(x) \land Q(x)) \Rightarrow \exist xP(x) \land \exist x Q(x)
∃x(P(x)∧Q(x))⇒∃xP(x)∧∃xQ(x)
上面一组比较简单,下面一组比较复杂:
(5)
∀
x
(
P
(
x
)
→
Q
(
x
)
)
⇒
∀
x
P
(
x
)
→
∀
x
Q
(
x
)
\forall x(P(x) \to Q(x)) \Rightarrow \forall xP(x) \to \forall xQ(x)
∀x(P(x)→Q(x))⇒∀xP(x)→∀xQ(x)
(6)
∃
x
(
P
(
x
)
→
Q
(
x
)
)
⇔
∀
x
P
(
x
)
→
∃
x
Q
(
x
)
\exist x(P(x) \to Q(x)) \Leftrightarrow \forall xP(x) \to \exist xQ(x)
∃x(P(x)→Q(x))⇔∀xP(x)→∃xQ(x)
(7)
∀
x
(
P
(
x
)
↔
Q
(
x
)
)
⇒
∀
x
P
(
x
)
↔
∀
x
Q
(
x
)
\forall x(P(x) \leftrightarrow Q(x)) \Rightarrow \forall xP(x) \leftrightarrow \forall xQ(x)
∀x(P(x)↔Q(x))⇒∀xP(x)↔∀xQ(x)
(8)
∃
x
P
(
x
)
→
∀
x
Q
(
x
)
⇒
∀
x
(
P
(
x
)
→
Q
(
x
)
)
\exist xP(x) \to \forall xQ(x) \Rightarrow \forall x(P(x) \to Q(x))
∃xP(x)→∀xQ(x)⇒∀x(P(x)→Q(x))
证明(1)设 t t t 是谓词公式 ∀ x ( P ( x ) ∧ Q ( x ) ) \forall x(P(x) \land Q(x)) ∀x(P(x)∧Q(x)) 的任一赋值,其论域为 D D D 。
- 如果 t t t 使得 ∀ x ( P ( x ) ∧ Q ( x ) ) \forall x(P(x) \land Q(x)) ∀x(P(x)∧Q(x)) 为真,则对于任一个体 a ∈ D a \in D a∈D ,使得 P ( a ) ∧ Q ( a ) P(a) \land Q(a) P(a)∧Q(a) 为真,即 P ( a ) P(a) P(a) 和 Q ( a ) Q(a) Q(a) 的真值均为真,从而有 ∀ x P ( x ) \forall xP(x) ∀xP(x) 和 ∀ x Q ( x ) \forall xQ(x) ∀xQ(x) 均为真,即 ∀ x P ( x ) ∧ ∀ x Q ( x ) \forall xP(x) \land \forall xQ(x) ∀xP(x)∧∀xQ(x) 为真;
- 如果 t t t 使得 ∀ x P ( x ) ∧ Q ( x ) ) \forall xP(x) \land Q(x)) ∀xP(x)∧Q(x)) 为假,则存在个体 a ∈ D a \in D a∈D ,使得 P ( a ) ∧ Q ( a ) P(a) \land Q(a) P(a)∧Q(a) 为假,即 P ( a ) P(a) P(a) 或 Q ( a ) Q(a) Q(a) 的真值为假,从而有 ∀ x P ( x ) \forall xP(x) ∀xP(x) 或 ∀ x Q ( x ) \forall xQ(x) ∀xQ(x) 为假,即 ∀ x P ( x ) ∧ ∀ x Q ( x ) \forall xP(x) \land \forall xQ(x) ∀xP(x)∧∀xQ(x) 为假
- 综上所述, ∀ x ( P ( x ) ∧ Q ( x ) ) ⇔ ∀ x P ( x ) ∧ ∀ x Q ( x ) \forall x(P(x) \land Q(x)) \Leftrightarrow \forall xP(x) \land \forall xQ(x) ∀x(P(x)∧Q(x))⇔∀xP(x)∧∀xQ(x) 成立
证明(5)任给一个赋值 t t t ,其论域为 D D D 。假设在 t t t 下, ∀ x P ( x ) → ∀ x Q ( x ) \forall xP(x) \to \forall xQ(x) ∀xP(x)→∀xQ(x) 的真值为 F F F ,则 ∀ x P ( x ) \forall xP(x) ∀xP(x) 为 T T T , ∀ x Q ( x ) \forall xQ(x) ∀xQ(x) 为 F F F 。由 ∀ x Q ( x ) \forall xQ(x) ∀xQ(x) 为 F F F ,得到存在 a ∈ D a\in D a∈D ,使得 Q ( a ) Q(a) Q(a) 为 F F F ,又因为 ∀ x P ( x ) \forall xP(x) ∀xP(x) 为 T T T ,有 P ( a ) P(a) P(a) 为 T T T ,从而推出 P ( a ) → Q ( a ) P(a) \to Q(a) P(a)→Q(a) 为 F F F ,即 ∀ x ( P ( x ) → Q ( x ) ) \forall x(P(x) \to Q(x)) ∀x(P(x)→Q(x)) 为 F F F 。由否定后件法得到, ∀ x ( P ( x ) → Q ( x ) ) ⇒ ∀ x P ( x ) → ∀ x Q ( x ) \forall x(P(x) \to Q(x)) \Rightarrow \forall xP(x) \to \forall xQ(x) ∀x(P(x)→Q(x))⇒∀xP(x)→∀xQ(x) 。
证明(8) ∃ x P ( x ) → ∀ x Q ( x ) ⇔ ¬ ∃ x P ( x ) ∨ ∀ x Q ( x ) ⇔ ∀ x ¬ P ( x ) ∨ ∀ x Q ( x ) ⇒ ∀ x ( ¬ P ( x ) ∨ Q ( x ) ) ⇔ ∀ x ( P ( x ) → Q ( x ) ) \begin{aligned} \exist xP(x) \to \forall xQ(x) &\Leftrightarrow \lnot \exist xP(x) \lor \forall xQ(x) \\ &\Leftrightarrow \forall x\lnot P(x) \lor \forall xQ(x) \\ &\Rightarrow \forall x(\lnot P(x) \lor Q(x)) \\ &\Leftrightarrow \forall x(P(x) \to Q(x)) \end{aligned} ∃xP(x)→∀xQ(x)⇔¬∃xP(x)∨∀xQ(x)⇔∀x¬P(x)∨∀xQ(x)⇒∀x(¬P(x)∨Q(x))⇔∀x(P(x)→Q(x))
3.2.5 多重量词律
对于多个量词的情况,量词出现的先后次序不能随意调换。为了便于说明,这里只讨论两个量词的情况,更多量词的使用方法与此类似。若设 P ( x , y ) P(x, y) P(x,y) 表示 x , y x, y x,y 是同乡, x x x 的论域为一班学生, y y y 的论域为二班学生,则:
- ∀ x ∀ y P ( x , y ) \forall x\forall yP(x, y) ∀x∀yP(x,y) 表示“一班每个学生和二班每个学生都是同乡”, ∀ y ∀ x P ( x , y ) \forall y\forall xP(x, y) ∀y∀xP(x,y) 表示“二班每个学生和一班每个学生都是同乡”,二者都表示“一班和二班所有的学生都是同乡”,含义相同,所以 ∀ x ∀ y P ( x , y ) ⇔ ∀ y ∀ x P ( x , y ) \forall x\forall yP(x, y) \Leftrightarrow \forall y\forall xP(x, y) ∀x∀yP(x,y)⇔∀y∀xP(x,y) 。
- ∃ x ∃ y P ( x , y ) \exist x\exist yP(x, y) ∃x∃yP(x,y) 表示“一班的某些学生和二班的某些学生是同乡”,例如一班的小明和二班的小李是同乡,也可以说“二班的某些学生和一班的某些学生是同乡”,即 ∃ y ∃ x P ( x , y ) \exist y\exist xP(x, y) ∃y∃xP(x,y) ,所以 ∃ x ∃ y P ( x , y ) ⇔ ∃ y ∃ x P ( x , y ) \exist x\exist yP(x, y) \Leftrightarrow \exist y\exist xP(x, y) ∃x∃yP(x,y)⇔∃y∃xP(x,y) 。
- ∀ x ∃ y P ( x , y ) \forall x \exist yP(x, y) ∀x∃yP(x,y) 表示“对于一班任意学生,二班至少有一个学生和他是同乡”, ∃ y ∀ x P ( x , y ) \exist y\forall xP(x, y) ∃y∀xP(x,y) 表示“二班存在某个学生,和一班所有学生是同乡”。显然,二者的含义是不同的,如果后者为真,则前者也为真,即 ∃ y ∀ x P ( x , y ) ⇒ ∀ x ∃ y P ( x , y ) \exist y\forall xP(x, y) \Rightarrow \forall x\exist yP(x, y) ∃y∀xP(x,y)⇒∀x∃yP(x,y) 。但是如果前者为真,后者不一定为真,即 ∀ x ∃ y P ( x , y ) ⇏ ∃ y ∀ x P ( x , y ) \forall x\exist yP(x, y) \nRightarrow \exist y\forall xP(x, y) ∀x∃yP(x,y)⇏∃y∀xP(x,y) ,所以二者不等价。
对于二元谓词前置量词,有以下8个等价公式和蕴含公式,可见,全称量词和存在量词在谓词公式中出现的次序不能随意改变:
(1)
∀
x
∀
y
P
(
x
,
y
)
⇔
∀
y
∀
x
P
(
x
,
y
)
\forall x\forall yP(x, y) \Leftrightarrow \forall y\forall xP(x, y)
∀x∀yP(x,y)⇔∀y∀xP(x,y)
(2)
∀
x
∀
y
P
(
x
,
y
)
⇒
∃
y
∀
x
P
(
x
,
y
)
\forall x\forall yP(x, y) \Rightarrow \exist y\forall xP(x, y)
∀x∀yP(x,y)⇒∃y∀xP(x,y)
(3)
∀
y
∀
x
P
(
x
,
y
)
⇒
∃
x
∀
y
P
(
x
,
y
)
\forall y\forall xP(x, y) \Rightarrow \exist x\forall yP(x, y)
∀y∀xP(x,y)⇒∃x∀yP(x,y)
(4)
∃
x
∀
y
P
(
x
,
y
)
⇒
∀
y
∃
x
P
(
x
,
y
)
\exist x\forall yP(x, y) \Rightarrow \forall y \exist xP(x, y)
∃x∀yP(x,y)⇒∀y∃xP(x,y)
(5)
∃
y
∀
x
P
(
x
,
y
)
⇒
∀
x
∃
y
P
(
x
,
y
)
\exist y\forall xP(x, y) \Rightarrow \forall x\exist yP(x, y)
∃y∀xP(x,y)⇒∀x∃yP(x,y)
(6)
∀
x
∃
y
P
(
x
,
y
)
⇒
∃
y
∃
x
P
(
x
,
y
)
\forall x\exist yP(x, y) \Rightarrow \exist y\exist xP(x, y)
∀x∃yP(x,y)⇒∃y∃xP(x,y)
(7)
∀
y
∃
x
P
(
x
,
y
)
⇒
∃
x
∃
y
P
(
x
,
y
)
\forall y\exist xP(x, y) \Rightarrow \exist x\exist yP(x, y)
∀y∃xP(x,y)⇒∃x∃yP(x,y)
(8)
∃
x
∃
y
P
(
x
,
y
)
⇔
∃
y
∃
x
P
(
x
,
y
)
\exist x\exist yP(x, y) \Leftrightarrow \exist y\exist xP(x, y)
∃x∃yP(x,y)⇔∃y∃xP(x,y)
其关系图如下所示:
3.2.6 常用等价公式和蕴含公式
谓词逻辑中常用的等价公式和蕴含公式如下所示。结合替换规则和传递规则,可以比较方便地推导证明谓词逻辑中的一些等价公式和蕴含公式:
公式代码 | 常用的等价公式和蕴含公式 |
---|---|
E 25 E_{25} E25 | ¬ ∀ x P ( x ) ⇔ ∃ x ¬ P ( x ) \lnot \forall xP(x) \Leftrightarrow \exist x\lnot P(x) ¬∀xP(x)⇔∃x¬P(x) |
E 26 E_{26} E26 | ¬ ∃ x P ( x ) ⇔ ∀ x ¬ P ( x ) \lnot \exist xP(x) \Leftrightarrow \forall x\lnot P(x) ¬∃xP(x)⇔∀x¬P(x) |
E 27 E_{27} E27 | ∀ x ( P ( x ) ∧ Q ) ⇔ ∀ x P ( x ) ∧ Q \forall x(P(x) \land Q) \Leftrightarrow \forall xP(x) \land Q ∀x(P(x)∧Q)⇔∀xP(x)∧Q |
E 28 E_{28} E28 | ∀ x ( P ( x ) ∨ Q ) ⇔ ∀ x P ( x ) ∨ Q \forall x(P(x) \lor Q) \Leftrightarrow \forall xP(x) \lor Q ∀x(P(x)∨Q)⇔∀xP(x)∨Q |
E 29 E_{29} E29 | ∃ x ( P ( x ) ∧ Q ) ⇔ ∃ x P ( x ) ∧ Q \exist x(P(x) \land Q) \Leftrightarrow \exist xP(x) \land Q ∃x(P(x)∧Q)⇔∃xP(x)∧Q |
E 30 E_{30} E30 | ∃ x ( P ( x ) ∨ Q ) ⇔ ∃ x P ( x ) ∨ Q \exist x(P(x) \lor Q) \Leftrightarrow \exist xP(x) \lor Q ∃x(P(x)∨Q)⇔∃xP(x)∨Q |
E 31 E_{31} E31 | ∀ x P ( x ) → Q ⇔ ∃ x ( P ( x ) → Q ) \forall xP(x) \to Q \Leftrightarrow \exist x(P(x) \to Q) ∀xP(x)→Q⇔∃x(P(x)→Q) |
E 32 E_{32} E32 | ∃ x P ( x ) → Q ⇔ ∀ x ( P ( x ) → Q ) \exist xP(x) \to Q \Leftrightarrow \forall x(P(x) \to Q) ∃xP(x)→Q⇔∀x(P(x)→Q) |
E 33 E_{33} E33 | Q → ∀ x P ( x ) ⇔ ∀ x ( Q → P ( x ) ) Q \to \forall xP(x) \Leftrightarrow \forall x(Q\to P(x)) Q→∀xP(x)⇔∀x(Q→P(x)) |
E 34 E_{34} E34 | Q → ∃ x P ( x ) ⇔ ∃ x ( Q → P ( x ) ) Q \to \exist xP(x) \Leftrightarrow \exist x(Q \to P(x)) Q→∃xP(x)⇔∃x(Q→P(x)) |
E 35 E_{35} E35 | ∀ x ( P ( x ) ∧ Q ( x ) ) ⇔ ∀ x P ( x ) ∧ ∀ x Q ( x ) \forall x(P(x) \land Q(x)) \Leftrightarrow \forall xP(x) \land \forall xQ(x) ∀x(P(x)∧Q(x))⇔∀xP(x)∧∀xQ(x) |
E 36 E_{36} E36 | ∃ x ( P ( x ) ∨ Q ( x ) ) ⇔ ∃ x P ( x ) ∨ ∃ x Q ( x ) \exist x(P(x) \lor Q(x)) \Leftrightarrow \exist xP(x) \lor \exist xQ(x) ∃x(P(x)∨Q(x))⇔∃xP(x)∨∃xQ(x) |
E 37 E_{37} E37 | ∃ x ( P ( x ) → Q ( x ) ) ⇔ ∀ x P ( x ) → ∃ x Q ( x ) \exist x(P(x) \to Q(x)) \Leftrightarrow \forall xP(x) \to \exist xQ(x) ∃x(P(x)→Q(x))⇔∀xP(x)→∃xQ(x) |
I 22 I_{22} I22 | ∀ x P ( x ) ⇒ P ( y ) \forall xP(x) \Rightarrow P(y) ∀xP(x)⇒P(y) , y y y 是论域中任一确定个体 |
I 23 I_{23} I23 | P ( y ) ⇒ ∃ x P ( x ) P(y) \Rightarrow \exist xP(x) P(y)⇒∃xP(x) , y y y 是论域中某一确定个体 |
I 24 I_{24} I24 | ∀ x P ( x ) ⇒ ∃ x P ( x ) \forall xP(x) \Rightarrow \exist xP(x) ∀xP(x)⇒∃xP(x) |
I 25 I_{25} I25 | ∃ x ( P ( x ) ∧ Q ( x ) ) ⇒ ∃ x P ( x ) ∧ ∃ x Q ( x ) \exist x(P(x) \land Q(x)) \Rightarrow \exist xP(x) \land \exist xQ(x) ∃x(P(x)∧Q(x))⇒∃xP(x)∧∃xQ(x) |
I 26 I_{26} I26 | ∀ x P ( x ) ∨ ∀ x Q ( x ) ⇒ ∀ x ( P ( x ) ∨ Q ( x ) ) \forall xP(x) \lor \forall xQ(x) \Rightarrow \forall x(P(x) \lor Q(x)) ∀xP(x)∨∀xQ(x)⇒∀x(P(x)∨Q(x)) |
I 27 I_{27} I27 | ∀ x ( P ( x ) → Q ( x ) ) ⇒ ∀ x P ( x ) → ∀ x Q ( x ) \forall x(P(x) \to Q(x)) \Rightarrow \forall xP(x) \to \forall xQ(x) ∀x(P(x)→Q(x))⇒∀xP(x)→∀xQ(x) |
I 28 I_{28} I28 | ∃ x P ( x ) → ∀ x Q ( x ) ⇒ ∀ x ( P ( x ) → Q ( x ) ) \exist xP(x) \to \forall xQ(x) \Rightarrow \forall x(P(x) \to Q(x)) ∃xP(x)→∀xQ(x)⇒∀x(P(x)→Q(x)) |
3.3 前束范式
对于一个谓词公式,如果所有量词都非否定地集中出现在整个公式的最前端,它们的辖域为整个公式,则称该公式为前束范式,如 ∀ x ∀ y ∃ z ( Q ( x , y ) → R ( z ) ) \forall x\forall y\exist z(Q(x, y) \to R(z)) ∀x∀y∃z(Q(x,y)→R(z)) 。应用量词的否定律和量词辖域的扩张公式,结合换名规则,任何一个谓词公式都可以变换为前束范式。