【离散数学】数理逻辑 第二章 谓词逻辑(3) 谓词公式的逻辑等价与蕴含、谓词演算的永真公式

本文属于「离散数学」系列文章之一。这一系列着重于离散数学的学习和应用。由于内容随时可能发生更新变动,欢迎关注和收藏离散数学系列文章汇总目录一文以作备忘。此外,在本系列学习文章中,为了透彻理解离散数学,本人参考了诸多博客、教程、文档、书籍等资料。以下是本文的不完全参考目录,在后续学习中还会逐渐补充:

  • 国外经典教材)离散数学及其应用 第七版 Discrete Mathematics and Its Applications 7th ,作者是 Kenneth H.Rosen ,袁崇义译,机械工业出版社
  • 离散数学 第二版,武波等编著,西安电子科技大学出版社,2006年
  • 离散数学 第三版,方世昌等编著,西安电子科技大学出版社,2013年
  • (经典参考书及其题解)离散数学/离散数学——理论•分析•题解,左孝凌、李为鉴、刘永才编著,上海科学技术文献出版社
  • 离散数学习题集:数理逻辑与集合论分册,耿素云;图论分册,耿素云;抽象代数分册, 张立昂。北京大学出版社


3. 逻辑等价与蕴含、谓词演算的永真公式

3.1 谓词逻辑的逻辑等价与蕴含

定义3.1.1 给定任意两个谓词公式 A A A B B B ,若对于任何赋值, A A A B B B 的真值均相同,则称谓词公式 A A A B B B 等价,记为 A ⇔ B A\Leftrightarrow B AB

定义3.1.2 给定任意两个谓词公式 A A A B B B ,若 A → B A\to B AB 是永真式,则称 A A A 蕴含 B B B ,记为 A ⇒ B A \Rightarrow B AB

类似于命题逻辑的逻辑等价与蕴含,对于谓词公式 A , B , C A, B, C A,B,C ,有如下结论:

  • A ⇔ B A \Leftrightarrow B AB 当且仅当 A ↔ B A \leftrightarrow B AB 是重言式。
  • A ⇔ B A \Leftrightarrow B AB 当且仅当 A ⇒ B A \Rightarrow B AB B ⇒ A B \Rightarrow A BA
  • A ⇔ B A \Leftrightarrow B AB B ⇔ C B \Leftrightarrow C BC ,则 A ⇔ C A \Leftrightarrow C AC(谓词逻辑等价关系的传递规则)。
  • A ⇒ B A \Rightarrow B AB B ⇒ C B \Rightarrow C BC ,则 A ⇒ C A \Rightarrow C AC(谓词逻辑蕴含关系的传递规则)。

命题逻辑中的代入规则、替换规则,在谓词逻辑中同样适用。

3.2 谓词演算的永真公式

3.2.1 命题逻辑的等价式和蕴含式在谓词逻辑中的推广应用

对于命题逻辑中的任一等价/蕴含公式,对其应用代入规则,即用谓词逻辑的任意公式代入命题逻辑等价/蕴含公式中的某个命题变元,所得结果是谓词逻辑的一个等价/蕴含公式。例如,对 E 10 E_{10} E10 德摩根律 ¬ ( A ∧ B ) ⇔ ¬ A ∨ ¬ B \lnot (A \land B) \Leftrightarrow \lnot A \lor \lnot B ¬(AB)¬A¬B ,用 ∀ x P ( x ) \forall xP(x) xP(x) 代入 A A A ∃ x Q ( x ) \exist xQ(x) xQ(x) 代入 B B B ,则有 ¬ ( ∀ x P ( x ) ∧ ∃ x Q ( x ) ) ⇔ ¬ ∀ x P ( x ) ∨ ¬ ∃ x Q ( x ) \lnot (\forall xP(x) \land \exist xQ(x)) \Leftrightarrow \lnot \forall xP(x) \lor \lnot \exist xQ(x) ¬(xP(x)xQ(x))¬xP(x)¬xQ(x)

3.2.2 量词的否定律

量词的否定律(2个公式),说明全称量词和存在量词可以相互表达
¬ ∀ x P ( x ) ⇔ ∃ x ¬ P ( x ) ¬ ∃ x P ( x ) ⇔ ∀ x ¬ P ( x ) \begin{aligned} &\lnot \forall xP(x) \Leftrightarrow \exist x\lnot P(x)\\ &\lnot \exist xP(x) \Leftrightarrow \forall x\lnot P(x) \end{aligned} ¬xP(x)x¬P(x)¬xP(x)x¬P(x)

证明:
(1)设论域为 D D D t t t 是任一赋值。

  • 如果 t t t 使得 ¬ ∀ x P ( x ) \lnot \forall xP(x) ¬xP(x) 为真,则 t t t 使得 ∀ x P ( x ) \forall xP(x) xP(x) 为假,即存在个体 a ∈ D a \in D aD 使得 P ( a ) P(a) P(a) 为假,从而有 ¬ P ( a ) \lnot P(a) ¬P(a) 为真,故有 ∃ x ¬ P ( x ) \exist x\lnot P(x) x¬P(x) 为真。
  • 如果 t t t 使得 ¬ ∀ x P ( x ) \lnot \forall xP(x) ¬xP(x) 为假,则 t t t 使得 ∀ x P ( x ) \forall xP(x) xP(x) 为真,即对于任一个体 a ∈ D a \in D aD ,均有 P ( a ) P(a) P(a) 为真,从而有 ¬ P ( a ) \lnot P(a) ¬P(a) 为假,故有 ∃ x ¬ P ( x ) \exist x\lnot P(x) x¬P(x) 为假。
  • 综上所述, ¬ ∀ x P ( x ) ⇔ ∃ x ¬ P ( x ) \lnot \forall xP(x) \Leftrightarrow \exist x\lnot P(x) ¬xP(x)x¬P(x) 成立。
  • 再给出等价公式 ¬ ∀ x P ( x ) ⇔ ∃ x ¬ P ( x ) \lnot \forall xP(x) \Leftrightarrow \exist x\lnot P(x) ¬xP(x)x¬P(x) 在一个有限论域上的证明。设有限论域为 D = { a 1 , a 2 , … , a n } D = \{ a_1, a_2, \dots, a_n\} D={a1,a2,,an} ,则对某个个体变元 x x x 的量化可以用命题形式表示,于是有:
    ¬ ∀ x P ( x ) ⇔ ¬ ( P ( a 1 ) ∧ P ( a 2 ) ∧ ⋯ ∧ P ( a n ) ) ⇔ ¬ P ( a 1 ) ∨ ¬ P ( a 2 ) ∨ ⋯ ∨ ¬ P ( a n ) ⇔ ∃ x ¬ P ( x ) \begin{aligned} \lnot \forall xP(x) &\Leftrightarrow \lnot (P(a_1) \land P(a_2) \land \dots \land P(a_n)) \\ &\Leftrightarrow \lnot P(a_1) \lor \lnot P(a_2) \lor \dots \lor \lnot P(a_n) \\ &\Leftrightarrow \exist x\lnot P(x) \end{aligned} ¬xP(x)¬(P(a1)P(a2)P(an))¬P(a1)¬P(a2)¬P(an)x¬P(x)

(2)设论域为 D D D t t t 是任一赋值。

  • 如果 t t t 使得 ¬ ∃ x P ( x ) \lnot \exist xP(x) ¬xP(x) 为真,则 t t t 使得 ∃ x P ( x ) \exist xP(x) xP(x) 为假,即对于任一个体 a ∈ D a \in D aD ,均有 P ( a ) P(a) P(a) 为假,从而有 ¬ P ( a ) \lnot P(a) ¬P(a) 为真,故有 ∀ x ¬ P ( x ) \forall x\lnot P(x) x¬P(x) 为真。
  • 如果 t t t 使得 ¬ ∃ x P ( x ) \lnot \exist xP(x) ¬xP(x) 为假,则 t t t 使得 ∃ x P ( x ) \exist xP(x) xP(x) 为真,即存在个体 a ∈ D a \in D aD 使得 P ( a ) P(a) P(a) 为真,从而 ¬ P ( a ) \lnot P(a) ¬P(a) 为假,故有 ∀ x ¬ P ( x ) \forall x\lnot P(x) x¬P(x) 为假。
  • 综上所述, ¬ ∃ x P ( x ) ⇔ ∀ x ¬ P ( x ) \lnot \exist xP(x) \Leftrightarrow \forall x\lnot P(x) ¬xP(x)x¬P(x) 成立。
  • 再给出等价公式 ¬ ∃ x P ( x ) ⇔ ∀ x ¬ P ( x ) \lnot \exist xP(x) \Leftrightarrow \forall x\lnot P(x) ¬xP(x)x¬P(x) 在一个有限论域上的证明。设有限论域为 D = { a 1 , a 2 , … , a n } D = \{ a_1, a_2, \dots, a_n\} D={a1,a2,,an} ,则对某个个体变元 x x x 的量化可以用命题形式表示,于是有:
    ¬ ∃ x P ( x ) ⇔ ¬ ( P ( a 1 ) ∨ P ( a 2 ) ∨ ⋯ ∨ P ( a n ) ) ⇔ ¬ P ( a 1 ) ∧ ¬ P ( a 2 ) ∧ ⋯ ∧ ¬ P ( a n ) ⇔ ∀ x ¬ P ( x ) \begin{aligned} \lnot \exist xP(x)&\Leftrightarrow \lnot (P(a_1) \lor P(a_2) \lor \dots \lor P(a_n)) \\ &\Leftrightarrow \lnot P(a_1) \land \lnot P(a_2) \land \dots \land \lnot P(a_n) \\ &\Leftrightarrow \forall x\lnot P(x) \end{aligned} ¬xP(x)¬(P(a1)P(a2)P(an))¬P(a1)¬P(a2)¬P(an)x¬P(x)

3.2.3 量词辖域的扩张与收缩律

P ( x ) P(x) P(x) 是谓词公式, Q Q Q 是不含自由变元 x x x 的谓词公式。于是有:
(1) ∀ x ( P ( x ) ∧ Q ) ) ⇔ ∀ x P ( x ) ∧ Q \forall x(P(x) \land Q)) \Leftrightarrow \forall xP(x) \land Q x(P(x)Q))xP(x)Q
(2) ∀ x ( P ( x ) ∨ Q ) ) ⇔ ∀ x P ( x ) ∨ Q \forall x(P(x) \lor Q)) \Leftrightarrow \forall xP(x) \lor Q x(P(x)Q))xP(x)Q
(3) ∃ x ( P ( x ) ∧ Q ) ⇔ ∃ x P ( x ) ∧ Q \exist x(P(x) \land Q) \Leftrightarrow \exist xP(x) \land Q x(P(x)Q)xP(x)Q
(4) ∃ x ( P ( x ) ∨ Q ) ⇔ ∃ x P ( x ) ∨ Q \exist x(P(x) \lor Q) \Leftrightarrow \exist xP(x) \lor Q x(P(x)Q)xP(x)Q

上面一组比较简单,下面一组比较复杂:
(5) ∃ x P ( x ) → Q ⇔ ∀ x ( P ( x ) → Q ) \exist xP(x) \to Q \Leftrightarrow \forall x(P(x) \to Q) xP(x)Qx(P(x)Q)
(6) ∀ x P ( x ) → Q ⇔ ∃ x ( P ( x ) → Q ) \forall xP(x) \to Q \Leftrightarrow \exist x(P(x) \to Q) xP(x)Qx(P(x)Q)
(7) Q → ∃ x P ( x ) ⇔ ∃ x ( Q → P ( x ) ) Q\to \exist xP(x) \Leftrightarrow \exist x(Q \to P(x)) QxP(x)x(QP(x))
(8) Q → ∀ x P ( x ) ⇔ ∀ x ( Q → P ( x ) ) Q \to \forall xP(x) \Leftrightarrow \forall x(Q \to P(x)) QxP(x)x(QP(x))

证明(5) ∃ x P ( x ) → Q ⇔ ¬ ∃ x P ( x ) ∨ Q ⇔ ∀ x ¬ P ( x ) ∨ Q ⇔ ∀ x ( ¬ P ( x ) ∨ Q ) ⇔ ∀ x ( P ( x ) → Q ) \begin{aligned} \exist xP(x) \to Q &\Leftrightarrow \lnot \exist xP(x) \lor Q \\ &\Leftrightarrow \forall x \lnot P(x) \lor Q \\ &\Leftrightarrow \forall x(\lnot P(x) \lor Q) \\ &\Leftrightarrow \forall x(P(x) \to Q)\end{aligned} xP(x)Q¬xP(x)Qx¬P(x)Qx(¬P(x)Q)x(P(x)Q)
证明(6) ∀ x P ( x ) → Q ⇔ ¬ ∀ x P ( x ) ∨ Q ⇔ ∃ x ¬ P ( x ) ∨ Q ⇔ ∃ x ( ¬ P ( x ) ∨ Q ) ⇔ ∃ x ( P ( x ) → Q ) \begin{aligned} \forall xP(x) \to Q &\Leftrightarrow \lnot \forall xP(x) \lor Q \\ &\Leftrightarrow \exist x \lnot P(x) \lor Q \\ &\Leftrightarrow \exist x(\lnot P(x) \lor Q) \\ &\Leftrightarrow \exist x(P(x) \to Q)\end{aligned} xP(x)Q¬xP(x)Qx¬P(x)Qx(¬P(x)Q)x(P(x)Q)
证明(7) Q → ∃ x P ( x ) ⇔ ¬ Q ∨ ∃ x P ( x ) ⇔ ∃ x ( P ( x ) ∨ ¬ Q ) ⇔ ∃ x ( Q → P ( x ) ) \begin{aligned} Q\to \exist xP(x) &\Leftrightarrow \lnot Q\lor \exist xP(x) \\ &\Leftrightarrow \exist x(P(x) \lor \lnot Q) \\ &\Leftrightarrow \exist x(Q \to P(x)) \end{aligned} QxP(x)¬QxP(x)x(P(x)¬Q)x(QP(x))
证明(8) Q → ∀ x P ( x ) ⇔ ¬ Q ∨ ∀ x P ( x ) ⇔ ∀ x ( P ( x ) ∨ ¬ Q ) ⇔ ∀ x ( Q → P ( x ) ) \begin{aligned} Q\to \forall xP(x) &\Leftrightarrow \lnot Q \lor \forall xP(x) \\ &\Leftrightarrow \forall x(P(x) \lor \lnot Q) \\ &\Leftrightarrow \forall x(Q \to P(x)) \end{aligned} QxP(x)¬QxP(x)x(P(x)¬Q)x(QP(x))

3.2.4 量词的分配律

有限论域中易证(1)和(2):
(1) ∀ x ( P ( x ) ∧ Q ( x ) ) ⇔ ∀ x P ( x ) ∧ ∀ x Q ( x ) \forall x(P(x) \land Q(x)) \Leftrightarrow \forall xP(x) \land \forall xQ(x) x(P(x)Q(x))xP(x)xQ(x)
(2) ∃ x ( P ( x ) ∨ Q ( x ) ) ⇔ ∃ x P ( x ) ∨ ∃ x Q ( x ) \exist x(P(x) \lor Q(x)) \Leftrightarrow \exist xP(x) \lor \exist xQ(x) x(P(x)Q(x))xP(x)xQ(x)
(3) ∀ x P ( x ) ∨ ∀ x Q ( x ) ⇒ ∀ x ( P ( x ) ∨ Q ( x ) ) \forall xP(x) \lor \forall xQ(x) \Rightarrow \forall x(P(x) \lor Q(x)) xP(x)xQ(x)x(P(x)Q(x))
(4) ∃ x ( P ( x ) ∧ Q ( x ) ) ⇒ ∃ x P ( x ) ∧ ∃ x Q ( x ) \exist x(P(x) \land Q(x)) \Rightarrow \exist xP(x) \land \exist x Q(x) x(P(x)Q(x))xP(x)xQ(x)

上面一组比较简单,下面一组比较复杂:
(5) ∀ x ( P ( x ) → Q ( x ) ) ⇒ ∀ x P ( x ) → ∀ x Q ( x ) \forall x(P(x) \to Q(x)) \Rightarrow \forall xP(x) \to \forall xQ(x) x(P(x)Q(x))xP(x)xQ(x)
(6) ∃ x ( P ( x ) → Q ( x ) ) ⇔ ∀ x P ( x ) → ∃ x Q ( x ) \exist x(P(x) \to Q(x)) \Leftrightarrow \forall xP(x) \to \exist xQ(x) x(P(x)Q(x))xP(x)xQ(x)
(7) ∀ x ( P ( x ) ↔ Q ( x ) ) ⇒ ∀ x P ( x ) ↔ ∀ x Q ( x ) \forall x(P(x) \leftrightarrow Q(x)) \Rightarrow \forall xP(x) \leftrightarrow \forall xQ(x) x(P(x)Q(x))xP(x)xQ(x)
(8) ∃ x P ( x ) → ∀ x Q ( x ) ⇒ ∀ x ( P ( x ) → Q ( x ) ) \exist xP(x) \to \forall xQ(x) \Rightarrow \forall x(P(x) \to Q(x)) xP(x)xQ(x)x(P(x)Q(x))

证明(1)设 t t t 是谓词公式 ∀ x ( P ( x ) ∧ Q ( x ) ) \forall x(P(x) \land Q(x)) x(P(x)Q(x)) 的任一赋值,其论域为 D D D

  • 如果 t t t 使得 ∀ x ( P ( x ) ∧ Q ( x ) ) \forall x(P(x) \land Q(x)) x(P(x)Q(x)) 为真,则对于任一个体 a ∈ D a \in D aD ,使得 P ( a ) ∧ Q ( a ) P(a) \land Q(a) P(a)Q(a) 为真,即 P ( a ) P(a) P(a) Q ( a ) Q(a) Q(a) 的真值均为真,从而有 ∀ x P ( x ) \forall xP(x) xP(x) ∀ x Q ( x ) \forall xQ(x) xQ(x) 均为真,即 ∀ x P ( x ) ∧ ∀ x Q ( x ) \forall xP(x) \land \forall xQ(x) xP(x)xQ(x) 为真;
  • 如果 t t t 使得 ∀ x P ( x ) ∧ Q ( x ) ) \forall xP(x) \land Q(x)) xP(x)Q(x)) 为假,则存在个体 a ∈ D a \in D aD ,使得 P ( a ) ∧ Q ( a ) P(a) \land Q(a) P(a)Q(a) 为假,即 P ( a ) P(a) P(a) Q ( a ) Q(a) Q(a) 的真值为假,从而有 ∀ x P ( x ) \forall xP(x) xP(x) ∀ x Q ( x ) \forall xQ(x) xQ(x) 为假,即 ∀ x P ( x ) ∧ ∀ x Q ( x ) \forall xP(x) \land \forall xQ(x) xP(x)xQ(x) 为假
  • 综上所述, ∀ x ( P ( x ) ∧ Q ( x ) ) ⇔ ∀ x P ( x ) ∧ ∀ x Q ( x ) \forall x(P(x) \land Q(x)) \Leftrightarrow \forall xP(x) \land \forall xQ(x) x(P(x)Q(x))xP(x)xQ(x) 成立

证明(5)任给一个赋值 t t t ,其论域为 D D D 。假设在 t t t 下, ∀ x P ( x ) → ∀ x Q ( x ) \forall xP(x) \to \forall xQ(x) xP(x)xQ(x) 的真值为 F F F ,则 ∀ x P ( x ) \forall xP(x) xP(x) T T T ∀ x Q ( x ) \forall xQ(x) xQ(x) F F F 。由 ∀ x Q ( x ) \forall xQ(x) xQ(x) F F F ,得到存在 a ∈ D a\in D aD ,使得 Q ( a ) Q(a) Q(a) F F F ,又因为 ∀ x P ( x ) \forall xP(x) xP(x) T T T ,有 P ( a ) P(a) P(a) T T T ,从而推出 P ( a ) → Q ( a ) P(a) \to Q(a) P(a)Q(a) F F F ,即 ∀ x ( P ( x ) → Q ( x ) ) \forall x(P(x) \to Q(x)) x(P(x)Q(x)) F F F 。由否定后件法得到, ∀ x ( P ( x ) → Q ( x ) ) ⇒ ∀ x P ( x ) → ∀ x Q ( x ) \forall x(P(x) \to Q(x)) \Rightarrow \forall xP(x) \to \forall xQ(x) x(P(x)Q(x))xP(x)xQ(x)

证明(8) ∃ x P ( x ) → ∀ x Q ( x ) ⇔ ¬ ∃ x P ( x ) ∨ ∀ x Q ( x ) ⇔ ∀ x ¬ P ( x ) ∨ ∀ x Q ( x ) ⇒ ∀ x ( ¬ P ( x ) ∨ Q ( x ) ) ⇔ ∀ x ( P ( x ) → Q ( x ) ) \begin{aligned} \exist xP(x) \to \forall xQ(x) &\Leftrightarrow \lnot \exist xP(x) \lor \forall xQ(x) \\ &\Leftrightarrow \forall x\lnot P(x) \lor \forall xQ(x) \\ &\Rightarrow \forall x(\lnot P(x) \lor Q(x)) \\ &\Leftrightarrow \forall x(P(x) \to Q(x)) \end{aligned} xP(x)xQ(x)¬xP(x)xQ(x)x¬P(x)xQ(x)x(¬P(x)Q(x))x(P(x)Q(x))

3.2.5 多重量词律

对于多个量词的情况,量词出现的先后次序不能随意调换。为了便于说明,这里只讨论两个量词的情况,更多量词的使用方法与此类似。若设 P ( x , y ) P(x, y) P(x,y) 表示 x , y x, y x,y 是同乡, x x x 的论域为一班学生, y y y 的论域为二班学生,则:

  • ∀ x ∀ y P ( x , y ) \forall x\forall yP(x, y) xyP(x,y) 表示“一班每个学生和二班每个学生都是同乡”, ∀ y ∀ x P ( x , y ) \forall y\forall xP(x, y) yxP(x,y) 表示“二班每个学生和一班每个学生都是同乡”,二者都表示“一班和二班所有的学生都是同乡”,含义相同,所以 ∀ x ∀ y P ( x , y ) ⇔ ∀ y ∀ x P ( x , y ) \forall x\forall yP(x, y) \Leftrightarrow \forall y\forall xP(x, y) xyP(x,y)yxP(x,y)
  • ∃ x ∃ y P ( x , y ) \exist x\exist yP(x, y) xyP(x,y) 表示“一班的某些学生和二班的某些学生是同乡”,例如一班的小明和二班的小李是同乡,也可以说“二班的某些学生和一班的某些学生是同乡”,即 ∃ y ∃ x P ( x , y ) \exist y\exist xP(x, y) yxP(x,y) ,所以 ∃ x ∃ y P ( x , y ) ⇔ ∃ y ∃ x P ( x , y ) \exist x\exist yP(x, y) \Leftrightarrow \exist y\exist xP(x, y) xyP(x,y)yxP(x,y)
  • ∀ x ∃ y P ( x , y ) \forall x \exist yP(x, y) xyP(x,y) 表示“对于一班任意学生,二班至少有一个学生和他是同乡”, ∃ y ∀ x P ( x , y ) \exist y\forall xP(x, y) yxP(x,y) 表示“二班存在某个学生,和一班所有学生是同乡”。显然,二者的含义是不同的,如果后者为真,则前者也为真,即 ∃ y ∀ x P ( x , y ) ⇒ ∀ x ∃ y P ( x , y ) \exist y\forall xP(x, y) \Rightarrow \forall x\exist yP(x, y) yxP(x,y)xyP(x,y) 。但是如果前者为真,后者不一定为真,即 ∀ x ∃ y P ( x , y ) ⇏ ∃ y ∀ x P ( x , y ) \forall x\exist yP(x, y) \nRightarrow \exist y\forall xP(x, y) xyP(x,y)yxP(x,y) ,所以二者不等价。

对于二元谓词前置量词,有以下8个等价公式和蕴含公式,可见,全称量词和存在量词在谓词公式中出现的次序不能随意改变
(1) ∀ x ∀ y P ( x , y ) ⇔ ∀ y ∀ x P ( x , y ) \forall x\forall yP(x, y) \Leftrightarrow \forall y\forall xP(x, y) xyP(x,y)yxP(x,y)
(2) ∀ x ∀ y P ( x , y ) ⇒ ∃ y ∀ x P ( x , y ) \forall x\forall yP(x, y) \Rightarrow \exist y\forall xP(x, y) xyP(x,y)yxP(x,y)
(3) ∀ y ∀ x P ( x , y ) ⇒ ∃ x ∀ y P ( x , y ) \forall y\forall xP(x, y) \Rightarrow \exist x\forall yP(x, y) yxP(x,y)xyP(x,y)
(4) ∃ x ∀ y P ( x , y ) ⇒ ∀ y ∃ x P ( x , y ) \exist x\forall yP(x, y) \Rightarrow \forall y \exist xP(x, y) xyP(x,y)yxP(x,y)
(5) ∃ y ∀ x P ( x , y ) ⇒ ∀ x ∃ y P ( x , y ) \exist y\forall xP(x, y) \Rightarrow \forall x\exist yP(x, y) yxP(x,y)xyP(x,y)
(6) ∀ x ∃ y P ( x , y ) ⇒ ∃ y ∃ x P ( x , y ) \forall x\exist yP(x, y) \Rightarrow \exist y\exist xP(x, y) xyP(x,y)yxP(x,y)
(7) ∀ y ∃ x P ( x , y ) ⇒ ∃ x ∃ y P ( x , y ) \forall y\exist xP(x, y) \Rightarrow \exist x\exist yP(x, y) yxP(x,y)xyP(x,y)
(8) ∃ x ∃ y P ( x , y ) ⇔ ∃ y ∃ x P ( x , y ) \exist x\exist yP(x, y) \Leftrightarrow \exist y\exist xP(x, y) xyP(x,y)yxP(x,y)

其关系图如下所示:
请添加图片描述

3.2.6 常用等价公式和蕴含公式

谓词逻辑中常用的等价公式和蕴含公式如下所示。结合替换规则传递规则,可以比较方便地推导证明谓词逻辑中的一些等价公式和蕴含公式:

公式代码常用的等价公式和蕴含公式
E 25 E_{25} E25 ¬ ∀ x P ( x ) ⇔ ∃ x ¬ P ( x ) \lnot \forall xP(x) \Leftrightarrow \exist x\lnot P(x) ¬xP(x)x¬P(x)
E 26 E_{26} E26 ¬ ∃ x P ( x ) ⇔ ∀ x ¬ P ( x ) \lnot \exist xP(x) \Leftrightarrow \forall x\lnot P(x) ¬xP(x)x¬P(x)
E 27 E_{27} E27 ∀ x ( P ( x ) ∧ Q ) ⇔ ∀ x P ( x ) ∧ Q \forall x(P(x) \land Q) \Leftrightarrow \forall xP(x) \land Q x(P(x)Q)xP(x)Q
E 28 E_{28} E28 ∀ x ( P ( x ) ∨ Q ) ⇔ ∀ x P ( x ) ∨ Q \forall x(P(x) \lor Q) \Leftrightarrow \forall xP(x) \lor Q x(P(x)Q)xP(x)Q
E 29 E_{29} E29 ∃ x ( P ( x ) ∧ Q ) ⇔ ∃ x P ( x ) ∧ Q \exist x(P(x) \land Q) \Leftrightarrow \exist xP(x) \land Q x(P(x)Q)xP(x)Q
E 30 E_{30} E30 ∃ x ( P ( x ) ∨ Q ) ⇔ ∃ x P ( x ) ∨ Q \exist x(P(x) \lor Q) \Leftrightarrow \exist xP(x) \lor Q x(P(x)Q)xP(x)Q
E 31 E_{31} E31 ∀ x P ( x ) → Q ⇔ ∃ x ( P ( x ) → Q ) \forall xP(x) \to Q \Leftrightarrow \exist x(P(x) \to Q) xP(x)Qx(P(x)Q)
E 32 E_{32} E32 ∃ x P ( x ) → Q ⇔ ∀ x ( P ( x ) → Q ) \exist xP(x) \to Q \Leftrightarrow \forall x(P(x) \to Q) xP(x)Qx(P(x)Q)
E 33 E_{33} E33 Q → ∀ x P ( x ) ⇔ ∀ x ( Q → P ( x ) ) Q \to \forall xP(x) \Leftrightarrow \forall x(Q\to P(x)) QxP(x)x(QP(x))
E 34 E_{34} E34 Q → ∃ x P ( x ) ⇔ ∃ x ( Q → P ( x ) ) Q \to \exist xP(x) \Leftrightarrow \exist x(Q \to P(x)) QxP(x)x(QP(x))
E 35 E_{35} E35 ∀ x ( P ( x ) ∧ Q ( x ) ) ⇔ ∀ x P ( x ) ∧ ∀ x Q ( x ) \forall x(P(x) \land Q(x)) \Leftrightarrow \forall xP(x) \land \forall xQ(x) x(P(x)Q(x))xP(x)xQ(x)
E 36 E_{36} E36 ∃ x ( P ( x ) ∨ Q ( x ) ) ⇔ ∃ x P ( x ) ∨ ∃ x Q ( x ) \exist x(P(x) \lor Q(x)) \Leftrightarrow \exist xP(x) \lor \exist xQ(x) x(P(x)Q(x))xP(x)xQ(x)
E 37 E_{37} E37 ∃ x ( P ( x ) → Q ( x ) ) ⇔ ∀ x P ( x ) → ∃ x Q ( x ) \exist x(P(x) \to Q(x)) \Leftrightarrow \forall xP(x) \to \exist xQ(x) x(P(x)Q(x))xP(x)xQ(x)
I 22 I_{22} I22 ∀ x P ( x ) ⇒ P ( y ) \forall xP(x) \Rightarrow P(y) xP(x)P(y) y y y 是论域中任一确定个体
I 23 I_{23} I23 P ( y ) ⇒ ∃ x P ( x ) P(y) \Rightarrow \exist xP(x) P(y)xP(x) y y y 是论域中某一确定个体
I 24 I_{24} I24 ∀ x P ( x ) ⇒ ∃ x P ( x ) \forall xP(x) \Rightarrow \exist xP(x) xP(x)xP(x)
I 25 I_{25} I25 ∃ x ( P ( x ) ∧ Q ( x ) ) ⇒ ∃ x P ( x ) ∧ ∃ x Q ( x ) \exist x(P(x) \land Q(x)) \Rightarrow \exist xP(x) \land \exist xQ(x) x(P(x)Q(x))xP(x)xQ(x)
I 26 I_{26} I26 ∀ x P ( x ) ∨ ∀ x Q ( x ) ⇒ ∀ x ( P ( x ) ∨ Q ( x ) ) \forall xP(x) \lor \forall xQ(x) \Rightarrow \forall x(P(x) \lor Q(x)) xP(x)xQ(x)x(P(x)Q(x))
I 27 I_{27} I27 ∀ x ( P ( x ) → Q ( x ) ) ⇒ ∀ x P ( x ) → ∀ x Q ( x ) \forall x(P(x) \to Q(x)) \Rightarrow \forall xP(x) \to \forall xQ(x) x(P(x)Q(x))xP(x)xQ(x)
I 28 I_{28} I28 ∃ x P ( x ) → ∀ x Q ( x ) ⇒ ∀ x ( P ( x ) → Q ( x ) ) \exist xP(x) \to \forall xQ(x) \Rightarrow \forall x(P(x) \to Q(x)) xP(x)xQ(x)x(P(x)Q(x))

3.3 前束范式

对于一个谓词公式,如果所有量词都非否定地集中出现在整个公式的最前端,它们的辖域为整个公式,则称该公式为前束范式,如 ∀ x ∀ y ∃ z ( Q ( x , y ) → R ( z ) ) \forall x\forall y\exist z(Q(x, y) \to R(z)) xyz(Q(x,y)R(z)) 。应用量词的否定律量词辖域的扩张公式,结合换名规则,任何一个谓词公式都可以变换为前束范式

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值