【离散数学】数理逻辑 第二章 谓词逻辑(4) 谓词逻辑的推理理论

本文详细介绍了谓词逻辑中的推理规则,包括存在指定、全称指定、存在推广和全称推广,并通过多个实例展示了如何运用这些规则进行推理证明。文章涵盖的推理内容涉及消去量词、引入量词以及推理理论的实际应用,帮助读者深入理解离散数学中的谓词逻辑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文属于「离散数学」系列文章之一。这一系列着重于离散数学的学习和应用。由于内容随时可能发生更新变动,欢迎关注和收藏离散数学系列文章汇总目录一文以作备忘。此外,在本系列学习文章中,为了透彻理解数学知识,本人参考了诸多博客、教程、文档、书籍等资料。以下是本文的不完全参考目录,在后续学习中还会逐渐补充:

  • 国外经典教材)离散数学及其应用 第七版 Discrete Mathematics and Its Applications 7th ,作者是 Kenneth H.Rosen ,袁崇义译,机械工业出版社
  • 离散数学 第二版,武波等编著,西安电子科技大学出版社,2006年
  • 离散数学 第三版,方世昌等编著,西安电子科技大学出版社,2013年
  • (经典参考书及其题解)离散数学/离散数学——理论•分析•题解,左孝凌、李为鉴、刘永才编著,上海科学技术文献出版社
  • 离散数学习题集:数理逻辑与集合论分册,耿素云;图论分册,耿素云;抽象代数分册, 张立昂。北京大学出版社


4. 谓词逻辑的推理理论

类似于命题逻辑的推理理论,在谓词逻辑中,设 H 1 , H 2 , … , H n , C H_1, H_2, \dots, H_n, C H1,H2,,Hn,C 是谓词公式,若 H 1 ∧ H 2 ∧ ⋯ ∧ H n ⇒ C H_1 \land H_2 \land \dots \land H_n \Rightarrow C H1H2HnC ,则称 C C C 是由一组前提 H 1 , H 2 , … , H n H_1, H_2, \dots, H_n H1,H2,,Hn有效结论 valid conclusion ,或称 C C C 可由前提 H 1 , H 2 , … , H n H_1, H_2, \dots , H_n H1,H2,,Hn 逻辑地推出。从前提 H 1 , H 2 , … , H n H_1, H_2, \dots, H_n H1,H2,,Hn 推出结论 C C C 的过程,称为推理 reasoning论证 argument证明 proof

谓词逻辑的推理方法,可以看作是命题逻辑的推理理论的扩充。命题逻辑的推理规则和证明方法,如 P P P 规则、 T T T 规则、 C P CP CP 规则和无义证明法、平凡证明法、直接证明法、归谬法(反证法)、CP规则法,在谓词逻辑中同样适用。

只是在谓词逻辑中,某些前提和结论可能是带量词约束的,在推理过程中有时需要消去或引入量词。下面介绍消去或引入量词的四种常见推理规则。

4.1 消去或引入量词的常见推理规则

4.1.1 存在指定规则 existential specification 消去存在量词

这一规则简记为 E S ES ES 。其中 P P P 是谓词, a a a 是论域中使得 P ( a ) P(a) P(a) 的真值为真的个体。存在指定规则的含义是:如果 ∃ x P ( x ) \exist xP(x) xP(x) 为真,则该论域中存在个体常元 a a a ,使得 P ( a ) P(a) P(a) 的真值为真,此处应将 ∃ x \exist x x 辖域内所有变元 x x x 统一指定为个体常元 a a a
∃ x P ( x ) ∴ P ( a ) \frac {\exist xP(x) }{ \therefore P(a)} P(a)xP(x)

实际应用本规则时,通常指定为论域中某一确定的个体 a a a ,前提是所指定的个体使得谓词的真值为真。例如,设 P ( x ) P(x) P(x) x x x 是食草动物,论域为全体动物,则对 ∃ x P ( x ) \exist xP(x) xP(x) 应用 E S ES ES 可以得到 P ( 山 羊 ) P(山羊) P() ,但不能得到 P ( 老 虎 ) P(老虎) P()

4.1.2 全称指定规则 universal specification 消去全称量词

这一规则简记为 U S US US 。其中 P P P 是谓词, y y y P ( y ) P(y) P(y) 中是自由变元。全称指定规则的含义是:如果 ∀ x P ( x ) \forall xP(x) xP(x) 为真,那么 x x x 的论域中的每个确定个体 a a a 必然满足 P ( a ) P(a) P(a) 的真值为真,故而全称指定规则也可以指定到确定的个体常元。
∀ x P ( x ) ∴ P ( y ) \frac {\forall xP(x) }{ \therefore P(y)} P(y)xP(x)

需要注意的是,对谓词公式 ∃ x P ( x ) \exist xP(x) xP(x) ∀ x Q ( x ) \forall xQ(x) xQ(x) 均应用指定规则、且指定为同一个体时,应该先进行存在指定,再进行全称指定。因为 ∃ x P ( x ) \exist xP(x) xP(x) ∀ x Q ( x ) \forall xQ(x) xQ(x) 两者都成立时,若 P ( a ) P(a) P(a) 为真,则 Q ( a ) Q(a) Q(a) 为真;但若 Q ( a ) Q(a) Q(a) 为真,并不一定满足 P ( a ) P(a) P(a) 为真。

4.1.3 存在推广规则 existential generalization 引入存在量词

这一规则简记为 E G EG EG 。存在推广规则的意义是:如果论域内某一确定个体 a a a 能使 P ( a ) P(a) P(a) 的真值为真,那么一定有 ∃ x P ( x ) \exist xP(x) xP(x) 为真。应用 E G EG EG 并不要求将个体常元 a a a 出现的每一处都推广为 x x x 。例如,由 “ 1 = 1 1 = 1 1=1” 可以推广为“存在 x x x 使得 x = x x = x x=x” ,也可以推广为“存在 x x x 使得 x = 1 x = 1 x=1” 。但要求推广后的 x x x 都受存在量词的约束
P ( a ) ∴ ∃ x P ( x ) \frac {P(a)}{ \therefore \exist xP(x) } xP(x)P(a)

4.1.4 全称推广规则 universal generalization 引入全称量词

这一规则简记为 U G UG UG 。其中 Γ \Gamma Γ 是已知公理和前提的合取, Γ \Gamma Γ 中没有变元 x x x 的自由出现(即全是约束出现)。全称推广规则的意义是:如果从 Γ \Gamma Γ 可推出 P ( x ) P(x) P(x) ,那么从 Γ \Gamma Γ 也可以推出 ∀ x P ( x ) \forall xP(x) xP(x) 。或者说,如果能从已知的公理和前提,证明对于论域中的任一个体 x x x 都使 P ( x ) P(x) P(x) 为真,则可以得到 ∀ x P ( x ) \forall xP(x) xP(x) 为真
Γ ⇒ P ( x ) ∴ Γ ⇒ ∀ x P ( x ) \frac {\Gamma \Rightarrow P(x) }{ \therefore \Gamma \Rightarrow \forall xP(x)} ΓxP(x)ΓP(x)

下面的例子很好地说明了全称推广规则的内涵。


4.2 推理理论的实际运用

应用命题逻辑中给出的基本推理规则证明方法,结合命题逻辑和谓词逻辑的等价公式和蕴含公式量词的否定律量词辖域的扩张和收缩律量词的分配律以及上述四条规则,就可以完成谓词逻辑的推理证明。

例1:证明线段中垂线上所有的点到线段两端点的距离相等。
证明:如下图所示,从线段 A B AB AB 的中垂线上任意选取一点 X X X ,连接点 X X X 到线段两个端点,则 ∣ X A ∣ , ∣ X B ∣ |XA|, |XB| XA,XB 即为 X X X 到两端点的距离。由于线段的中垂线过线段的中点 O O O ,并且与线段垂直,因此有 ∣ O A ∣ = ∣ O B ∣ |OA| = |OB| OA=OB 。根据勾股定理知:
∣ X A ∣ = ∣ O A ∣ 2 + ∣ O X ∣ 2 = ∣ O B ∣ 2 + ∣ O X ∣ 2 = ∣ X B ∣ ■   Q . E . D |XA| = \sqrt{|OA|^2 + |OX|^2} = \sqrt{|OB|^2 + |OX|^2} = |XB| \quad \blacksquare \ Q.E.D XA=OA2+OX2 =OB2+OX2 =XB Q.E.D
请添加图片描述
例2:证明苏格拉底三段论——“所有的人都是要死的”,“苏格拉底是人”,“所以,苏格拉底是要死的”。
证明:设论域为全总个体域, H ( x ) H(x) H(x) x x x 是人, D ( x ) D(x) D(x) x x x 是要死的, s s s:苏格拉底。现要证明以下蕴含公式: ∀ x ( H ( x ) → D ( x ) ) , H ( s ) ⇒ D ( s ) \forall x(H(x) \to D(x)), H(s) \Rightarrow D(s) x(H(x)D(x)),H(s)D(s)
( 1 )   ∀ x ( H ( x ) → D ( x ) ) P ( 2 )   H ( s ) → D ( s ) U S , ( 1 ) ( 3 )   H ( s ) P ( 4 )   D ( s ) T , ( 3 ) , ( 4 ) , I ( 假 言 推 理 ) \begin{aligned} &(1)\ \forall x(H(x) \to D(x)) \quad& P\\ &(2)\ H(s) \to D(s) \quad& US, (1)\\ &(3)\ H(s) \quad& P\\ &(4)\ D(s) \quad& T, (3), (4), I(假言推理) \end{aligned} (1) x(H(x)D(x))(2) H(s)D(s)(3) H(s)(4) D(s)PUS,(1)PT,(3),(4),I()

例3:证明 ∀ x ( C ( x ) → W ( x ) ∧ R ( x ) ) ∧ ∃ x ( C ( x ) ∧ Q ( x ) ) ⇒ ∃ x ( Q ( x ) ∧ R ( x ) ) \forall x(C(x) \to W(x) \land R(x)) \land \exist x(C(x) \land Q(x)) \Rightarrow \exist x(Q(x) \land R(x)) x(C(x)W(x)R(x))x(C(x)Q(x))x(Q(x)R(x))
证明:
( 1 )   ∃ x ( C ( x ) ∧ Q ( x ) ) P ( 2 )   ∀ x ( C ( x ) → W ( x ) ∧ R ( x ) ) P ( 3 )   C ( a ) ∧ Q ( a ) E S , ( 1 ) ( 4 )   C ( a ) → W ( a ) ∧ R ( a ) U S , ( 2 ) ( 5 )   C ( a ) T , ( 3 ) , I ( 化 简 式 ) ( 6 )   W ( a ) ∧ R ( a ) T , ( 4 ) , ( 5 ) , I ( 假 言 推 理 ) ( 7 )   R ( a ) T , ( 6 ) , I ( 化 简 式 ) ( 8 )   Q ( a ) T , ( 3 ) , I ( 化 简 式 ) ( 9 )   Q ( a ) ∧ R ( a ) T , ( 7 ) , ( 8 ) , I ( 直 推 式 ) ( 10 )   ∃ x ( Q ( x ) ∧ R ( x ) ) E G , ( 9 ) \begin{aligned} &(1)\ \exist x(C(x) \land Q(x)) \quad& P\\ &(2)\ \forall x(C(x) \to W(x) \land R(x)) \quad& P\\ &(3)\ C(a) \land Q(a) \quad& ES, (1)\\ &(4)\ C(a) \to W(a) \land R(a) \quad& US, (2)\\ &(5)\ C(a) \quad& T, (3), I(化简式)\\ &(6)\ W(a) \land R(a) \quad& T, (4), (5), I(假言推理)\\ &(7)\ R(a) \quad& T, (6), I(化简式)\\ &(8)\ Q(a) \quad& T, (3), I(化简式)\\ &(9)\ Q(a) \land R(a) \quad& T, (7), (8), I(直推式)\\ &(10)\ \exist x(Q(x) \land R(x)) \quad& EG, (9) \end{aligned} (1) x(C(x)Q(x))(2) x(C(x)W(x)R(x))(3) C(a)Q(a)(4) C(a)W(a)R(a)(5) C(a)(6) W(a)R(a)(7) R(a)(8) Q(a)(9) Q(a)R(a)(10) x(Q(x)R(x))PPES,(1)US,(2)T,(3),I()T,(4),(5),I()T,(6),I()T,(3),I()T,(7),(8),I()EG,(9)
注意,这里的步骤(3)和步骤(4)的次序不能颠倒,即应用指定规则指定为同一个体时,应该先进行存在指定,再进行全称指定

例4:证明 ∀ x ( P ( x ) ∨ Q ( x ) ) ⇒ ∀ x P ( x ) ∨ ∃ x Q ( x ) \forall x(P(x) \lor Q(x)) \Rightarrow \forall xP(x) \lor \exist xQ(x) x(P(x)Q(x))xP(x)xQ(x)
证明 方法一 归谬法(反证法):
( 1 )   ¬ ( ∀ x P ( x ) ∨ ∃ x Q ( x ) ) P ( 假 设 前 提 ) ( 2 )   ¬ ∀ x P ( x ) ∧ ¬ ∃ x Q ( x ) T , ( 1 ) , E ( 德 摩 根 律 ) ( 3 )   ¬ ∀ x P ( x ) T , ( 2 ) , I ( 化 简 式 ) ( 4 )   ¬ ∃ x Q ( x ) T , ( 2 ) , I ( 化 简 式 ) ( 5 )   ∃ x ¬ P ( x ) T , ( 3 ) , E ( 量 词 的 否 定 律 ) ( 6 )   ¬ P ( a ) E S , ( 5 ) ( 7 )   ∀ x ¬ Q ( x ) T , ( 4 ) , E ( 量 词 的 否 定 律 ) ( 8 )   ¬ Q ( a ) U S , ( 7 ) ( 9 )   ¬ P ( a ) ∧ ¬ Q ( a ) T , ( 6 ) , ( 8 ) , I ( 直 推 式 ) ( 10 )   ¬ ( P ( a ) ∨ Q ( a ) ) T , ( 9 ) , E ( 德 摩 根 律 ) ( 11 )   ∀ x ( P ( x ) ∨ Q ( x ) ) ) P ( 12 )   P ( a ) ∨ Q ( a ) U S , ( 11 ) ( 13 )   ¬ ( P ( a ) ∨ Q ( a ) ) ∧ ( P ( a ) ∨ Q ( a ) )   ( 矛 盾 ) T , ( 10 ) , ( 12 ) , 直 推 式 \begin{aligned} &(1)\ \lnot (\forall xP(x) \lor \exist xQ(x)) \quad& P(假设前提)\\ &(2)\ \lnot \forall xP(x) \land \lnot \exist xQ(x) \quad& T, (1), E(德摩根律)\\ &(3)\ \lnot \forall xP(x) \quad& T, (2), I(化简式)\\ &(4)\ \lnot \exist xQ(x) \quad& T, (2), I(化简式)\\ &(5)\ \exist x\lnot P(x) \quad& T, (3), E(量词的否定律) \\ &(6)\ \lnot P(a) \quad& ES, (5)\\ &(7)\ \forall x\lnot Q(x) \quad& T, (4), E(量词的否定律)\\ &(8)\ \lnot Q(a) \quad& US, (7)\\ &(9)\ \lnot P(a) \land \lnot Q(a) \quad& T, (6), (8), I(直推式)\\ &(10)\ \lnot (P(a) \lor Q(a)) \quad& T, (9), E(德摩根律)\\ &(11)\ \forall x(P(x) \lor Q(x))) \quad& P\\ &(12)\ P(a) \lor Q(a) \quad& US,(11)\\ &(13)\ \lnot (P(a) \lor Q(a)) \land (P(a) \lor Q(a))\ (矛盾) \quad& T, (10), (12), 直推式 \end{aligned} (1) ¬(xP(x)xQ(x))(2) ¬xP(x)¬xQ(x)(3) ¬xP(x)(4) ¬xQ(x)(5) x¬P(x)(6) ¬P(a)(7) x¬Q(x)(8) ¬Q(a)(9) ¬P(a)¬Q(a)(10) ¬(P(a)Q(a))(11) x(P(x)Q(x)))(12) P(a)Q(a)(13) ¬(P(a)Q(a))(P(a)Q(a)) ()P()T,(1),E()T,(2),I()T,(2),I()T,(3),E()ES,(5)T,(4),E()US,(7)T,(6),(8),I()T,(9),E()PUS,(11)T,(10),(12),
证明 方法二 CP规则法:将原式变换为 ∀ x ( P ( x ) ∨ Q ( x ) ) ⇒ ¬ ∀ x P ( x ) → ∃ x Q ( x ) \forall x(P(x) \lor Q(x))\Rightarrow \lnot \forall xP(x) \to \exist xQ(x) x(P(x)Q(x))¬xP(x)xQ(x)
( 1 )   ¬ ∀ x P ( x ) P ( 附 加 前 提 ) ( 2 )   ∃ x ¬ P ( x ) T , ( 1 ) , E ( 量 词 的 否 定 律 ) ( 3 )   ¬ P ( a ) E S , ( 2 ) ( 4 )   ∀ x ( P ( x ) ∨ Q ( x ) ) P ( 5 )   P ( a ) ∨ Q ( a ) U S , ( 4 ) ( 6 )   Q ( a ) T , ( 3 ) , ( 5 ) , I ( 析 取 三 段 论 ) ( 7 )   ∃ x Q ( x ) E G , ( 6 ) ( 8 )   ¬ ∀ x P ( x ) → ∃ x Q ( x ) C P 规 则 \begin{aligned} &(1)\ \lnot \forall xP(x) \quad& P(附加前提) \\ &(2)\ \exist x\lnot P(x) \quad& T,(1), E(量词的否定律) \\ &(3)\ \lnot P(a) \quad& ES, (2)\\ &(4)\ \forall x(P(x) \lor Q(x)) \quad& P \\ &(5)\ P(a) \lor Q(a) \quad& US, (4)\\ &(6)\ Q(a) \quad& T, (3), (5), I(析取三段论)\\ &(7)\ \exist xQ(x) \quad& EG, (6)\\ &(8)\ \lnot \forall xP(x) \to \exist xQ(x) \quad& CP规则\\ \end{aligned} (1) ¬xP(x)(2) x¬P(x)(3) ¬P(a)(4) x(P(x)Q(x))(5) P(a)Q(a)(6) Q(a)(7) xQ(x)(8) ¬xP(x)xQ(x)P()T,(1),E()ES,(2)PUS,(4)T,(3),(5),I()EG,(6)CP

例5:指出下列推理中的错误,并说明理由。
( 1 )   ∀ x ( A ( x ) → B ( x ) ) P 前 提 引 入 ( 2 )   A ( y ) → B ( y ) U S , ( 1 ) ( 3 )   ∃ x A ( x ) P 前 提 引 入 ( 4 )   A ( y ) E S , ( 3 ) ( 5 )   B ( y ) T , ( 2 ) , ( 4 ) , I ( 6 )   ∃ x B ( x ) T , ( 5 ) , E G \begin{aligned} &(1)\ \forall x(A(x) \to B(x)) \quad &P前提引入&\\ &(2)\ A(y) \to B(y) \quad &US, (1)&\\ &(3)\ \exist xA(x) \quad &P前提引入&\\ &(4)\ A(y) \quad &ES, (3)&\\ &(5)\ B(y) \quad &T, (2), (4), I \\ &(6)\ \exist xB(x) \quad &T, (5), EG \end{aligned} (1) x(A(x)B(x))(2) A(y)B(y)(3) xA(x)(4) A(y)(5) B(y)(6) xB(x)PUS,(1)PES,(3)T,(2),(4),IT,(5),EG
解:第(2)步和第(4)步之间的次序出了错误。因为既要使用全称指定规则 U S US US ,又要使用存在指定规则 E S ES ES ,还要指定为相同的变元,所以应先作 E S ES ES 后作 U S US US
( 1 )   ∃ x A ( x ) P ( 2 )   A ( y ) E S , ( 1 ) ( 3 )   ∀ x ( A ( x ) → B ( x ) ) P ( 4 )   A ( y ) → B ( y ) U S , ( 3 ) ( 5 )   B ( y ) T , ( 2 ) , ( 4 ) , I ( 6 )   ∃ x B ( x ) E G , ( 5 ) \begin{aligned} &(1)\ \exist xA(x) \quad &P&\\ &(2)\ A(y) \quad &ES, (1)&\\ &(3)\ \forall x(A(x) \to B(x)) \quad &P&\\ &(4)\ A(y) \to B(y) \quad &US, (3)&\\ &(5)\ B(y) \quad &T, (2), (4), I \\ &(6)\ \exist xB(x) \quad &EG,(5) \end{aligned} (1) xA(x)(2) A(y)(3) x(A(x)B(x))(4) A(y)B(y)(5) B(y)(6) xB(x)PES,(1)PUS,(3)T,(2),(4),IEG,(5)

例6:判断下列推理是否正确,并证明你的结论。
前提: ∀ x ( P ( x ) → R ( x ) ) \forall x(P(x) \to R(x)) x(P(x)R(x)) ∀ x ( Q ( x ) → ¬ R ( x ) ) \forall x(Q(x) \to \lnot R(x)) x(Q(x)¬R(x))
结论: ∀ x ( Q ( x ) → ¬ P ( x ) ) \forall x(Q(x) \to \lnot P(x)) x(Q(x)¬P(x))
解:推理是正确的,证明过程如下:
( 1 )   ∀ x ( Q ( x ) → ¬ R ( x ) ) P ( 2 )   Q ( y ) → ¬ R ( y ) U S , ( 1 ) ( 3 )   ∀ x ( P ( x ) → R ( x ) ) P ( 4 )   P ( y ) → R ( y ) U S , ( 3 ) ( 5 )   ¬ R ( y ) → ¬ P ( y ) T , ( 4 ) , E ( 逆 反 律 ) ( 6 )   Q ( y ) → ¬ P ( y ) T , ( 2 ) , ( 5 ) , I ( 前 提 三 段 论 ) ( 7 )   ∀ x ( Q ( x ) → ¬ P ( x ) ) U G , ( 6 ) \begin{aligned} &(1)\ \forall x(Q(x) \to \lnot R(x)) \quad& P \\ &(2)\ Q(y) \to \lnot R(y) \quad& US, (1)\\ &(3)\ \forall x(P(x) \to R(x)) \quad& P \\ &(4)\ P(y) \to R(y) \quad& US, (3)\\ &(5)\ \lnot R(y) \to \lnot P(y) \quad& T, (4), E(逆反律) \\ &(6)\ Q(y) \to \lnot P(y) \quad& T, (2), (5), I(前提三段论) \\ &(7)\ \forall x(Q(x) \to \lnot P(x)) \quad& UG, (6)\\ \end{aligned} (1) x(Q(x)¬R(x))(2) Q(y)¬R(y)(3) x(P(x)R(x))(4) P(y)R(y)(5) ¬R(y)¬P(y)(6) Q(y)¬P(y)(7) x(Q(x)¬P(x))PUS,(1)PUS,(3)T,(4),E()T,(2),(5),I()UG,(6)

例7:证明下列推理的有效性。
前提: ∃ x ( S ( x ) ∧ ∀ y ( T ( y ) → L ( x , y ) ) ) \exist x(S(x) \land \forall y(T(y) \to L(x, y))) x(S(x)y(T(y)L(x,y))) ∀ x ( S ( x ) → ∀ y ( P ( y ) → ¬ L ( x , y ) ) ) \forall x(S(x) \to \forall y(P(y) \to \lnot L(x, y))) x(S(x)y(P(y)¬L(x,y)))
结论: ∀ x ( T ( x ) → ¬ P ( x ) ) \forall x(T(x) \to \lnot P(x)) x(T(x)¬P(x))
解:
( 1 )   ∃ x ( S ( x ) ∧ ∀ y ( T ( y ) → L ( x , y ) ) ) P ( 2 )   S ( a ) ∧ ∀ y ( T ( y ) → L ( a , y ) ) E S , ( 1 ) ( 3 )   S ( a ) T , ( 2 ) , I ( 化 简 式 ) ( 4 )   ∀ y ( T ( y ) → L ( a , y ) ) T , ( 2 ) , I ( 化 简 式 ) ( 5 )   T ( y ) → L ( a , y ) U S , ( 4 ) ( 6 )   ∀ x ( S ( x ) → ∀ y ( P ( y ) → ¬ L ( x , y ) ) ) P ( 7 )   S ( a ) → ∀ y ( P ( y ) → ¬ L ( a , y ) ) U S , ( 6 ) ( 8 )   ∀ y ( P ( y ) → ¬ L ( a , y ) ) T , ( 3 ) , ( 7 ) , I ( 假 言 推 理 ) ( 9 )   P ( y ) → ¬ L ( a , y ) U S , ( 8 ) ( 10 )   L ( a , y ) → ¬ P ( y ) T , ( 9 ) , E ( 逆 反 律 ) ( 11 )   T ( y ) → ¬ P ( y ) T , ( 5 ) , ( 10 ) , I ( 假 言 推 理 ) ( 12 )   ∀ x ( T ( x ) → ¬ P ( x ) ) U G , ( 11 ) \begin{aligned} &(1)\ \exist x(S(x) \land \forall y(T(y) \to L(x, y))) \quad& P \\ &(2)\ S(a) \land \forall y(T(y) \to L(a, y)) \quad& ES, (1)\\ &(3)\ S(a) \quad& T, (2), I(化简式) \\ &(4)\ \forall y(T(y) \to L(a, y)) \quad& T, (2), I(化简式) \\ &(5)\ T(y) \to L(a, y) \quad& US, (4)\\ &(6)\ \forall x(S(x) \to \forall y(P(y) \to \lnot L(x, y))) \quad& P \\ &(7)\ S(a) \to \forall y(P(y) \to \lnot L(a, y)) \quad& US, (6)\\ &(8)\ \forall y(P(y) \to \lnot L(a, y)) \quad& T, (3), (7), I(假言推理)\\ &(9)\ P(y) \to\lnot L(a, y) \quad& US, (8)\\ &(10)\ L(a, y) \to \lnot P(y) \quad& T, (9), E(逆反律)\\ &(11)\ T(y) \to \lnot P(y) \quad& T, (5), (10),I(假言推理)\\ &(12)\ \forall x(T(x) \to \lnot P(x)) \quad& UG, (11) \end{aligned} (1) x(S(x)y(T(y)L(x,y)))(2) S(a)y(T(y)L(a,y))(3) S(a)(4) y(T(y)L(a,y))(5) T(y)L(a,y)(6) x(S(x)y(P(y)¬L(x,y)))(7) S(a)y(P(y)¬L(a,y))(8) y(P(y)¬L(a,y))(9) P(y)¬L(a,y)(10) L(a,y)¬P(y)(11) T(y)¬P(y)(12) x(T(x)¬P(x))PES,(1)T,(2),I()T,(2),I()US,(4)PUS,(6)T,(3),(7),I()US,(8)T,(9),E()T,(5),(10),I()UG,(11)

例8:判断推理是否有效——所有事业有成就的人都是勤劳的人;存在一些勤劳的人,他们爱好业余写作;所以,有些事业有成就的人爱好业余写作。
解:设 S ( x ) S(x) S(x) x x x 是事业有成就的人, Q ( x ) Q(x) Q(x) x x x 是勤劳的人, Z ( x ) Z(x) Z(x) x x x 爱好业余写作,则符号化为: ∀ x ( S ( x ) → Q ( x ) ) , ∃ x ( Q ( x ) ∧ Z ( x ) ) ⇒ ∃ x ( S ( x ) ∧ Z ( x ) ) \forall x(S(x) \to Q(x)), \exist x(Q(x) \land Z(x)) \Rightarrow \exist x(S(x) \land Z(x)) x(S(x)Q(x)),x(Q(x)Z(x))x(S(x)Z(x))
经过分析,该论证是无效的,可以通过找出一个反例进行说明。取论域 D = { a , b } D = \{a, b\} D={a,b} S ( a ) = 1 ∧ S ( b ) = 0 ∧ Q ( a ) = 1 ∧ Q ( b ) = 1 ∧ Z ( a ) = 0 ∧ Z ( b ) = 1 S(a) = 1 \land S(b) = 0 \land Q(a) = 1\land Q(b) = 1 \land Z(a) = 0 \land Z(b) = 1 S(a)=1S(b)=0Q(a)=1Q(b)=1Z(a)=0Z(b)=1 ,则 ∀ x ( S ( x ) → Q ( x ) ) \forall x(S(x) \to Q(x)) x(S(x)Q(x)) 为真, ∃ x ( Q ( x ) ∧ Z ( x ) ) \exist x(Q(x) \land Z(x)) x(Q(x)Z(x)) 为真,所以前提为真,而 ∃ x ( S ( x ) ∧ Z ( x ) ) \exist x(S(x) \land Z(x)) x(S(x)Z(x)) 为假,不是永真式。

例9:设论域是某班所有学生,用给定的命题及谓词将以下句子符号化,并推理其结论。
(1)如果今天有选修课,有些学生就不能按时到会;当且仅当所有学生都按时到会,干部选举才能准时进行。所以,如果干部选举准时进行,那么今天没有选修课。( P P P :今天没有选修课, Q Q Q :干部选举准时进行, A ( x ) A(x) A(x) x x x 按时到会)
解:命题可符号化为
¬ P → ∃ x ¬ A ( x ) ,   ∀ x A ( x ) ↔ Q ⇒ Q → P ( 1 )   ¬ P → ∃ x ¬ A ( x ) P ( 2 )   P ∨ ∃ x ¬ A ( x ) T , ( 1 ) , E ( 蕴 含 律 ) ( 3 )   ∃ x ( ¬ A ( x ) ∨ P ) T , ( 2 ) , E ( 量 词 辖 域 的 扩 张 律 ) ( 4 )   ¬ A ( a ) ∨ P E S , ( 3 ) ( 5 )   A ( a ) → P T , ( 4 ) , E ( 蕴 含 律 ) ( 6 )   ∀ x A ( x ) ↔ Q P ( 7 )   ( ∀ x A ( x ) → Q ) ∧ ( Q → ∀ x A ( x ) ) T , ( 6 ) , E ( 双 条 件 律 ) ( 8 )   Q → ∀ x A ( x ) T , ( 7 ) , I ( 化 简 式 ) ( 9 )   ∀ x ( Q → A ( x ) ) T , ( 8 ) , E ( 量 词 辖 域 的 扩 张 律 ) ( 10 )   Q → A ( a ) U S , ( 9 ) ( 11 )   Q → P T , ( 5 ) , ( 8 ) , I ( 前 提 三 段 论 ) \lnot P \to \exist x\lnot A(x),\ \forall xA(x) \leftrightarrow Q \Rightarrow Q \to P \\ {} \\ \begin{aligned} &(1)\ \lnot P \to \exist x\lnot A(x) \quad& P \\ &(2)\ P\lor \exist x\lnot A(x) \quad& T, (1),E(蕴含律) \\ &(3)\ \exist x(\lnot A(x) \lor P) \quad& T, (2), E(量词辖域的扩张律) \\ &(4)\ \lnot A(a) \lor P \quad& ES, (3) \\ &(5)\ A(a) \to P \quad& T, (4), E(蕴含律)\\ &(6)\ \forall xA(x) \leftrightarrow Q \quad& P \\ &(7)\ (\forall xA(x) \to Q) \land (Q \to \forall xA(x)) \quad& T, (6), E(双条件律)\\ &(8)\ Q\to \forall xA(x) \quad& T, (7), I(化简式)\\ &(9)\ \forall x(Q \to A(x)) \quad& T, (8), E(量词辖域的扩张律)\\ &(10)\ Q \to A(a) \quad& US, (9)\\ &(11)\ Q \to P \quad& T, (5), (8), I(前提三段论)\\ \end{aligned} ¬Px¬A(x), xA(x)QQP(1) ¬Px¬A(x)(2) Px¬A(x)(3) x(¬A(x)P)(4) ¬A(a)P(5) A(a)P(6) xA(x)Q(7) (xA(x)Q)(QxA(x))(8) QxA(x)(9) x(QA(x))(10) QA(a)(11) QPPT,(1),E()T,(2),E()ES,(3)T,(4),E()PT,(6),E()T,(7),I()T,(8),E()US,(9)T,(5),(8),I()

(2)每个研究生或者是推荐免试者,或者是统考选拔者;所有的推荐免试者的本科课程都学得好,但并非所有研究生本科课程都学得好。所以一定有研究生是统考选拔者。( P ( x ) P(x) P(x) x x x 是研究生, Q ( x ) Q(x) Q(x) x x x 本科课程学得好, A ( x ) A(x) A(x) x x x 是推荐免试者, B ( x ) B(x) B(x) x x x 是统考选拔者)。
解:命题可符号化为
∀ x ( P ( x ) → ( A ( x ) ∨ B ( x ) ) ) , ∀ x ( A ( x ) → Q ( x ) ) , ¬ ∀ x ( P ( x ) → Q ( x ) ) ⇒ ∃ x ( P ( x ) ∧ B ( x ) ) ( 1 )   ¬ ∀ x ( P ( x ) → Q ( x ) )   P ( 2 )   ∃ x ¬ ( P ( x ) → Q ( x ) ) T , ( 1 ) , E ( 量 词 的 否 定 律 ) ( 3 )   ¬ ( P ( a ) → Q ( a ) ) E S , ( 2 ) ( 4 )   P ( a ) ∧ ¬ Q ( a ) T , ( 3 ) , E ( 蕴 含 律 , 德 摩 根 律 ) ( 5 )   P ( a ) T , ( 4 ) , I ( 化 简 式 ) ( 6 )   ¬ Q ( a ) T , ( 4 ) , I ( 化 简 式 ) ( 7 )   ∀ x ( P ( x ) → ( A ( x ) ∨ B ( x ) ) ) P ( 8 )   P ( a ) → ( A ( a ) ∨ B ( a ) ) U S , ( 7 ) ( 9 )   A ( a ) ∨ B ( a ) T , ( 5 ) , ( 8 ) , I ( 假 言 推 理 ) ( 10 )   ∀ x ( A ( x ) → Q ( x ) ) P ( 11 )   A ( a ) → Q ( a ) U S , ( 10 ) ( 12 )   ¬ A ( a ) T , ( 6 ) , ( 11 ) , I ( 拒 取 式 ) ( 13 )   B ( a ) T , ( 9 ) , ( 12 ) , I ( 析 取 三 段 论 ) ( 14 )   P ( a ) ∧ B ( a ) T , ( 5 ) , ( 13 ) , I ( 直 推 式 ) ( 15 )   ∃ x ( P ( x ) ∧ B ( x ) ) E G , ( 14 ) \forall x(P(x) \to (A(x) \lor B(x))), \forall x(A(x) \to Q(x)), \lnot \forall x(P(x) \to Q(x))\\ \Rightarrow \exist x(P(x) \land B(x))\\ \\ {} \\ \begin{aligned} &(1)\ \lnot \forall x(P(x) \to Q(x))\ \quad& P \\ &(2)\ \exist x\lnot (P(x) \to Q(x)) \quad& T, (1), E(量词的否定律) \\ &(3)\ \lnot (P(a) \to Q(a)) \quad& ES, (2) \\ &(4)\ P(a) \land \lnot Q(a) \quad& T, (3), E(蕴含律,德摩根律) \\ &(5)\ P(a) \quad& T, (4), I(化简式)\\ &(6)\ \lnot Q(a) \quad& T, (4), I(化简式) \\ &(7)\ \forall x(P(x) \to (A(x) \lor B(x))) \quad& P\\ &(8)\ P(a) \to (A(a) \lor B(a)) \quad& US, (7)\\ &(9)\ A(a) \lor B(a) \quad& T, (5), (8), I(假言推理)\\ &(10)\ \forall x(A(x) \to Q(x)) \quad& P\\ &(11)\ A(a) \to Q(a) \quad& US, (10)\\ &(12)\ \lnot A(a) \quad& T, (6), (11), I(拒取式)\\ &(13)\ B(a) \quad& T, (9), (12), I(析取三段论)\\ &(14)\ P(a) \land B(a) \quad& T, (5), (13), I(直推式)\\ &(15)\ \exist x(P(x) \land B(x)) \quad& EG, (14) \end{aligned} x(P(x)(A(x)B(x))),x(A(x)Q(x)),¬x(P(x)Q(x))x(P(x)B(x))(1) ¬x(P(x)Q(x)) (2) x¬(P(x)Q(x))(3) ¬(P(a)Q(a))(4) P(a)¬Q(a)(5) P(a)(6) ¬Q(a)(7) x(P(x)(A(x)B(x)))(8) P(a)(A(a)B(a))(9) A(a)B(a)(10) x(A(x)Q(x))(11) A(a)Q(a)(12) ¬A(a)(13) B(a)(14) P(a)B(a)(15) x(P(x)B(x))PT,(1),E()ES,(2)T,(3),E(,)T,(4),I()T,(4),I()PUS,(7)T,(5),(8),I()PUS,(10)T,(6),(11),I()T,(9),(12),I()T,(5),(13),I()EG,(14)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

memcpy0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值