本文属于「离散数学」系列文章之一。这一系列着重于离散数学的学习和应用。由于内容随时可能发生更新变动,欢迎关注和收藏离散数学系列文章汇总目录一文以作备忘。此外,在本系列学习文章中,为了透彻理解数学知识,本人参考了诸多博客、教程、文档、书籍等资料。以下是本文的不完全参考目录,在后续学习中还会逐渐补充:
- (国外经典教材)离散数学及其应用 第七版
Discrete Mathematics and Its Applications 7th
,作者是Kenneth H.Rosen
,袁崇义译,机械工业出版社- 离散数学 第二版,武波等编著,西安电子科技大学出版社,2006年
- 离散数学 第三版,方世昌等编著,西安电子科技大学出版社,2013年
- (经典参考书及其题解)离散数学/离散数学——理论•分析•题解,左孝凌、李为鉴、刘永才编著,上海科学技术文献出版社
- 离散数学习题集:数理逻辑与集合论分册,耿素云;图论分册,耿素云;抽象代数分册, 张立昂。北京大学出版社
文章目录
4. 谓词逻辑的推理理论
类似于命题逻辑的推理理论,在谓词逻辑中,设
H
1
,
H
2
,
…
,
H
n
,
C
H_1, H_2, \dots, H_n, C
H1,H2,…,Hn,C 是谓词公式,若
H
1
∧
H
2
∧
⋯
∧
H
n
⇒
C
H_1 \land H_2 \land \dots \land H_n \Rightarrow C
H1∧H2∧⋯∧Hn⇒C ,则称
C
C
C 是由一组前提
H
1
,
H
2
,
…
,
H
n
H_1, H_2, \dots, H_n
H1,H2,…,Hn 的有效结论 valid conclusion
,或称
C
C
C 可由前提
H
1
,
H
2
,
…
,
H
n
H_1, H_2, \dots , H_n
H1,H2,…,Hn 逻辑地推出。从前提
H
1
,
H
2
,
…
,
H
n
H_1, H_2, \dots, H_n
H1,H2,…,Hn 推出结论
C
C
C 的过程,称为推理 reasoning
、论证 argument
或证明 proof
。
谓词逻辑的推理方法,可以看作是命题逻辑的推理理论的扩充。命题逻辑的推理规则和证明方法,如 P P P 规则、 T T T 规则、 C P CP CP 规则和无义证明法、平凡证明法、直接证明法、归谬法(反证法)、CP规则法,在谓词逻辑中同样适用。
只是在谓词逻辑中,某些前提和结论可能是带量词约束的,在推理过程中有时需要消去或引入量词。下面介绍消去或引入量词的四种常见推理规则。
4.1 消去或引入量词的常见推理规则
4.1.1 存在指定规则 existential specification
消去存在量词
这一规则简记为
E
S
ES
ES 。其中
P
P
P 是谓词,
a
a
a 是论域中使得
P
(
a
)
P(a)
P(a) 的真值为真的个体。存在指定规则的含义是:如果
∃
x
P
(
x
)
\exist xP(x)
∃xP(x) 为真,则该论域中存在个体常元
a
a
a ,使得
P
(
a
)
P(a)
P(a) 的真值为真,此处应将
∃
x
\exist x
∃x 辖域内所有变元
x
x
x 统一指定为个体常元
a
a
a :
∃
x
P
(
x
)
∴
P
(
a
)
\frac {\exist xP(x) }{ \therefore P(a)}
∴P(a)∃xP(x)
实际应用本规则时,通常指定为论域中某一确定的个体 a a a ,前提是所指定的个体使得谓词的真值为真。例如,设 P ( x ) P(x) P(x) 为 x x x 是食草动物,论域为全体动物,则对 ∃ x P ( x ) \exist xP(x) ∃xP(x) 应用 E S ES ES 可以得到 P ( 山 羊 ) P(山羊) P(山羊) ,但不能得到 P ( 老 虎 ) P(老虎) P(老虎) 。
4.1.2 全称指定规则 universal specification
消去全称量词
这一规则简记为
U
S
US
US 。其中
P
P
P 是谓词,
y
y
y 在
P
(
y
)
P(y)
P(y) 中是自由变元。全称指定规则的含义是:如果
∀
x
P
(
x
)
\forall xP(x)
∀xP(x) 为真,那么
x
x
x 的论域中的每个确定个体
a
a
a 必然满足
P
(
a
)
P(a)
P(a) 的真值为真,故而全称指定规则也可以指定到确定的个体常元。
∀
x
P
(
x
)
∴
P
(
y
)
\frac {\forall xP(x) }{ \therefore P(y)}
∴P(y)∀xP(x)
需要注意的是,对谓词公式 ∃ x P ( x ) \exist xP(x) ∃xP(x) 和 ∀ x Q ( x ) \forall xQ(x) ∀xQ(x) 均应用指定规则、且指定为同一个体时,应该先进行存在指定,再进行全称指定。因为 ∃ x P ( x ) \exist xP(x) ∃xP(x) 和 ∀ x Q ( x ) \forall xQ(x) ∀xQ(x) 两者都成立时,若 P ( a ) P(a) P(a) 为真,则 Q ( a ) Q(a) Q(a) 为真;但若 Q ( a ) Q(a) Q(a) 为真,并不一定满足 P ( a ) P(a) P(a) 为真。
4.1.3 存在推广规则 existential generalization
引入存在量词
这一规则简记为
E
G
EG
EG 。存在推广规则的意义是:如果论域内某一确定个体
a
a
a 能使
P
(
a
)
P(a)
P(a) 的真值为真,那么一定有
∃
x
P
(
x
)
\exist xP(x)
∃xP(x) 为真。应用
E
G
EG
EG 并不要求将个体常元
a
a
a 出现的每一处都推广为
x
x
x 。例如,由 “
1
=
1
1 = 1
1=1” 可以推广为“存在
x
x
x 使得
x
=
x
x = x
x=x” ,也可以推广为“存在
x
x
x 使得
x
=
1
x = 1
x=1” 。但要求推广后的
x
x
x 都受存在量词的约束。
P
(
a
)
∴
∃
x
P
(
x
)
\frac {P(a)}{ \therefore \exist xP(x) }
∴∃xP(x)P(a)
4.1.4 全称推广规则 universal generalization
引入全称量词
这一规则简记为
U
G
UG
UG 。其中
Γ
\Gamma
Γ 是已知公理和前提的合取,
Γ
\Gamma
Γ 中没有变元
x
x
x 的自由出现(即全是约束出现)。全称推广规则的意义是:如果从
Γ
\Gamma
Γ 可推出
P
(
x
)
P(x)
P(x) ,那么从
Γ
\Gamma
Γ 也可以推出
∀
x
P
(
x
)
\forall xP(x)
∀xP(x) 。或者说,如果能从已知的公理和前提,证明对于论域中的任一个体
x
x
x 都使
P
(
x
)
P(x)
P(x) 为真,则可以得到
∀
x
P
(
x
)
\forall xP(x)
∀xP(x) 为真。
Γ
⇒
P
(
x
)
∴
Γ
⇒
∀
x
P
(
x
)
\frac {\Gamma \Rightarrow P(x) }{ \therefore \Gamma \Rightarrow \forall xP(x)}
∴Γ⇒∀xP(x)Γ⇒P(x)
下面的例子很好地说明了全称推广规则的内涵。
4.2 推理理论的实际运用
应用命题逻辑中给出的基本推理规则和证明方法,结合命题逻辑和谓词逻辑的等价公式和蕴含公式、量词的否定律、量词辖域的扩张和收缩律、量词的分配律以及上述四条规则,就可以完成谓词逻辑的推理证明。
例1:证明线段中垂线上所有的点到线段两端点的距离相等。
证明:如下图所示,从线段
A
B
AB
AB 的中垂线上任意选取一点
X
X
X ,连接点
X
X
X 到线段两个端点,则
∣
X
A
∣
,
∣
X
B
∣
|XA|, |XB|
∣XA∣,∣XB∣ 即为
X
X
X 到两端点的距离。由于线段的中垂线过线段的中点
O
O
O ,并且与线段垂直,因此有
∣
O
A
∣
=
∣
O
B
∣
|OA| = |OB|
∣OA∣=∣OB∣ 。根据勾股定理知:
∣
X
A
∣
=
∣
O
A
∣
2
+
∣
O
X
∣
2
=
∣
O
B
∣
2
+
∣
O
X
∣
2
=
∣
X
B
∣
■
Q
.
E
.
D
|XA| = \sqrt{|OA|^2 + |OX|^2} = \sqrt{|OB|^2 + |OX|^2} = |XB| \quad \blacksquare \ Q.E.D
∣XA∣=∣OA∣2+∣OX∣2=∣OB∣2+∣OX∣2=∣XB∣■ Q.E.D
例2:证明苏格拉底三段论——“所有的人都是要死的”,“苏格拉底是人”,“所以,苏格拉底是要死的”。
证明:设论域为全总个体域,
H
(
x
)
H(x)
H(x):
x
x
x 是人,
D
(
x
)
D(x)
D(x):
x
x
x 是要死的,
s
s
s:苏格拉底。现要证明以下蕴含公式:
∀
x
(
H
(
x
)
→
D
(
x
)
)
,
H
(
s
)
⇒
D
(
s
)
\forall x(H(x) \to D(x)), H(s) \Rightarrow D(s)
∀x(H(x)→D(x)),H(s)⇒D(s) 。
(
1
)
∀
x
(
H
(
x
)
→
D
(
x
)
)
P
(
2
)
H
(
s
)
→
D
(
s
)
U
S
,
(
1
)
(
3
)
H
(
s
)
P
(
4
)
D
(
s
)
T
,
(
3
)
,
(
4
)
,
I
(
假
言
推
理
)
\begin{aligned} &(1)\ \forall x(H(x) \to D(x)) \quad& P\\ &(2)\ H(s) \to D(s) \quad& US, (1)\\ &(3)\ H(s) \quad& P\\ &(4)\ D(s) \quad& T, (3), (4), I(假言推理) \end{aligned}
(1) ∀x(H(x)→D(x))(2) H(s)→D(s)(3) H(s)(4) D(s)PUS,(1)PT,(3),(4),I(假言推理)
例3:证明
∀
x
(
C
(
x
)
→
W
(
x
)
∧
R
(
x
)
)
∧
∃
x
(
C
(
x
)
∧
Q
(
x
)
)
⇒
∃
x
(
Q
(
x
)
∧
R
(
x
)
)
\forall x(C(x) \to W(x) \land R(x)) \land \exist x(C(x) \land Q(x)) \Rightarrow \exist x(Q(x) \land R(x))
∀x(C(x)→W(x)∧R(x))∧∃x(C(x)∧Q(x))⇒∃x(Q(x)∧R(x)) 。
证明:
(
1
)
∃
x
(
C
(
x
)
∧
Q
(
x
)
)
P
(
2
)
∀
x
(
C
(
x
)
→
W
(
x
)
∧
R
(
x
)
)
P
(
3
)
C
(
a
)
∧
Q
(
a
)
E
S
,
(
1
)
(
4
)
C
(
a
)
→
W
(
a
)
∧
R
(
a
)
U
S
,
(
2
)
(
5
)
C
(
a
)
T
,
(
3
)
,
I
(
化
简
式
)
(
6
)
W
(
a
)
∧
R
(
a
)
T
,
(
4
)
,
(
5
)
,
I
(
假
言
推
理
)
(
7
)
R
(
a
)
T
,
(
6
)
,
I
(
化
简
式
)
(
8
)
Q
(
a
)
T
,
(
3
)
,
I
(
化
简
式
)
(
9
)
Q
(
a
)
∧
R
(
a
)
T
,
(
7
)
,
(
8
)
,
I
(
直
推
式
)
(
10
)
∃
x
(
Q
(
x
)
∧
R
(
x
)
)
E
G
,
(
9
)
\begin{aligned} &(1)\ \exist x(C(x) \land Q(x)) \quad& P\\ &(2)\ \forall x(C(x) \to W(x) \land R(x)) \quad& P\\ &(3)\ C(a) \land Q(a) \quad& ES, (1)\\ &(4)\ C(a) \to W(a) \land R(a) \quad& US, (2)\\ &(5)\ C(a) \quad& T, (3), I(化简式)\\ &(6)\ W(a) \land R(a) \quad& T, (4), (5), I(假言推理)\\ &(7)\ R(a) \quad& T, (6), I(化简式)\\ &(8)\ Q(a) \quad& T, (3), I(化简式)\\ &(9)\ Q(a) \land R(a) \quad& T, (7), (8), I(直推式)\\ &(10)\ \exist x(Q(x) \land R(x)) \quad& EG, (9) \end{aligned}
(1) ∃x(C(x)∧Q(x))(2) ∀x(C(x)→W(x)∧R(x))(3) C(a)∧Q(a)(4) C(a)→W(a)∧R(a)(5) C(a)(6) W(a)∧R(a)(7) R(a)(8) Q(a)(9) Q(a)∧R(a)(10) ∃x(Q(x)∧R(x))PPES,(1)US,(2)T,(3),I(化简式)T,(4),(5),I(假言推理)T,(6),I(化简式)T,(3),I(化简式)T,(7),(8),I(直推式)EG,(9)
注意,这里的步骤(3)和步骤(4)的次序不能颠倒,即应用指定规则指定为同一个体时,应该先进行存在指定,再进行全称指定。
例4:证明
∀
x
(
P
(
x
)
∨
Q
(
x
)
)
⇒
∀
x
P
(
x
)
∨
∃
x
Q
(
x
)
\forall x(P(x) \lor Q(x)) \Rightarrow \forall xP(x) \lor \exist xQ(x)
∀x(P(x)∨Q(x))⇒∀xP(x)∨∃xQ(x) 。
证明 方法一 归谬法(反证法):
(
1
)
¬
(
∀
x
P
(
x
)
∨
∃
x
Q
(
x
)
)
P
(
假
设
前
提
)
(
2
)
¬
∀
x
P
(
x
)
∧
¬
∃
x
Q
(
x
)
T
,
(
1
)
,
E
(
德
摩
根
律
)
(
3
)
¬
∀
x
P
(
x
)
T
,
(
2
)
,
I
(
化
简
式
)
(
4
)
¬
∃
x
Q
(
x
)
T
,
(
2
)
,
I
(
化
简
式
)
(
5
)
∃
x
¬
P
(
x
)
T
,
(
3
)
,
E
(
量
词
的
否
定
律
)
(
6
)
¬
P
(
a
)
E
S
,
(
5
)
(
7
)
∀
x
¬
Q
(
x
)
T
,
(
4
)
,
E
(
量
词
的
否
定
律
)
(
8
)
¬
Q
(
a
)
U
S
,
(
7
)
(
9
)
¬
P
(
a
)
∧
¬
Q
(
a
)
T
,
(
6
)
,
(
8
)
,
I
(
直
推
式
)
(
10
)
¬
(
P
(
a
)
∨
Q
(
a
)
)
T
,
(
9
)
,
E
(
德
摩
根
律
)
(
11
)
∀
x
(
P
(
x
)
∨
Q
(
x
)
)
)
P
(
12
)
P
(
a
)
∨
Q
(
a
)
U
S
,
(
11
)
(
13
)
¬
(
P
(
a
)
∨
Q
(
a
)
)
∧
(
P
(
a
)
∨
Q
(
a
)
)
(
矛
盾
)
T
,
(
10
)
,
(
12
)
,
直
推
式
\begin{aligned} &(1)\ \lnot (\forall xP(x) \lor \exist xQ(x)) \quad& P(假设前提)\\ &(2)\ \lnot \forall xP(x) \land \lnot \exist xQ(x) \quad& T, (1), E(德摩根律)\\ &(3)\ \lnot \forall xP(x) \quad& T, (2), I(化简式)\\ &(4)\ \lnot \exist xQ(x) \quad& T, (2), I(化简式)\\ &(5)\ \exist x\lnot P(x) \quad& T, (3), E(量词的否定律) \\ &(6)\ \lnot P(a) \quad& ES, (5)\\ &(7)\ \forall x\lnot Q(x) \quad& T, (4), E(量词的否定律)\\ &(8)\ \lnot Q(a) \quad& US, (7)\\ &(9)\ \lnot P(a) \land \lnot Q(a) \quad& T, (6), (8), I(直推式)\\ &(10)\ \lnot (P(a) \lor Q(a)) \quad& T, (9), E(德摩根律)\\ &(11)\ \forall x(P(x) \lor Q(x))) \quad& P\\ &(12)\ P(a) \lor Q(a) \quad& US,(11)\\ &(13)\ \lnot (P(a) \lor Q(a)) \land (P(a) \lor Q(a))\ (矛盾) \quad& T, (10), (12), 直推式 \end{aligned}
(1) ¬(∀xP(x)∨∃xQ(x))(2) ¬∀xP(x)∧¬∃xQ(x)(3) ¬∀xP(x)(4) ¬∃xQ(x)(5) ∃x¬P(x)(6) ¬P(a)(7) ∀x¬Q(x)(8) ¬Q(a)(9) ¬P(a)∧¬Q(a)(10) ¬(P(a)∨Q(a))(11) ∀x(P(x)∨Q(x)))(12) P(a)∨Q(a)(13) ¬(P(a)∨Q(a))∧(P(a)∨Q(a)) (矛盾)P(假设前提)T,(1),E(德摩根律)T,(2),I(化简式)T,(2),I(化简式)T,(3),E(量词的否定律)ES,(5)T,(4),E(量词的否定律)US,(7)T,(6),(8),I(直推式)T,(9),E(德摩根律)PUS,(11)T,(10),(12),直推式
证明 方法二 CP规则法:将原式变换为
∀
x
(
P
(
x
)
∨
Q
(
x
)
)
⇒
¬
∀
x
P
(
x
)
→
∃
x
Q
(
x
)
\forall x(P(x) \lor Q(x))\Rightarrow \lnot \forall xP(x) \to \exist xQ(x)
∀x(P(x)∨Q(x))⇒¬∀xP(x)→∃xQ(x)
(
1
)
¬
∀
x
P
(
x
)
P
(
附
加
前
提
)
(
2
)
∃
x
¬
P
(
x
)
T
,
(
1
)
,
E
(
量
词
的
否
定
律
)
(
3
)
¬
P
(
a
)
E
S
,
(
2
)
(
4
)
∀
x
(
P
(
x
)
∨
Q
(
x
)
)
P
(
5
)
P
(
a
)
∨
Q
(
a
)
U
S
,
(
4
)
(
6
)
Q
(
a
)
T
,
(
3
)
,
(
5
)
,
I
(
析
取
三
段
论
)
(
7
)
∃
x
Q
(
x
)
E
G
,
(
6
)
(
8
)
¬
∀
x
P
(
x
)
→
∃
x
Q
(
x
)
C
P
规
则
\begin{aligned} &(1)\ \lnot \forall xP(x) \quad& P(附加前提) \\ &(2)\ \exist x\lnot P(x) \quad& T,(1), E(量词的否定律) \\ &(3)\ \lnot P(a) \quad& ES, (2)\\ &(4)\ \forall x(P(x) \lor Q(x)) \quad& P \\ &(5)\ P(a) \lor Q(a) \quad& US, (4)\\ &(6)\ Q(a) \quad& T, (3), (5), I(析取三段论)\\ &(7)\ \exist xQ(x) \quad& EG, (6)\\ &(8)\ \lnot \forall xP(x) \to \exist xQ(x) \quad& CP规则\\ \end{aligned}
(1) ¬∀xP(x)(2) ∃x¬P(x)(3) ¬P(a)(4) ∀x(P(x)∨Q(x))(5) P(a)∨Q(a)(6) Q(a)(7) ∃xQ(x)(8) ¬∀xP(x)→∃xQ(x)P(附加前提)T,(1),E(量词的否定律)ES,(2)PUS,(4)T,(3),(5),I(析取三段论)EG,(6)CP规则
例5:指出下列推理中的错误,并说明理由。
(
1
)
∀
x
(
A
(
x
)
→
B
(
x
)
)
P
前
提
引
入
(
2
)
A
(
y
)
→
B
(
y
)
U
S
,
(
1
)
(
3
)
∃
x
A
(
x
)
P
前
提
引
入
(
4
)
A
(
y
)
E
S
,
(
3
)
(
5
)
B
(
y
)
T
,
(
2
)
,
(
4
)
,
I
(
6
)
∃
x
B
(
x
)
T
,
(
5
)
,
E
G
\begin{aligned} &(1)\ \forall x(A(x) \to B(x)) \quad &P前提引入&\\ &(2)\ A(y) \to B(y) \quad &US, (1)&\\ &(3)\ \exist xA(x) \quad &P前提引入&\\ &(4)\ A(y) \quad &ES, (3)&\\ &(5)\ B(y) \quad &T, (2), (4), I \\ &(6)\ \exist xB(x) \quad &T, (5), EG \end{aligned}
(1) ∀x(A(x)→B(x))(2) A(y)→B(y)(3) ∃xA(x)(4) A(y)(5) B(y)(6) ∃xB(x)P前提引入US,(1)P前提引入ES,(3)T,(2),(4),IT,(5),EG
解:第(2)步和第(4)步之间的次序出了错误。因为既要使用全称指定规则
U
S
US
US ,又要使用存在指定规则
E
S
ES
ES ,还要指定为相同的变元,所以应先作
E
S
ES
ES 后作
U
S
US
US 。
(
1
)
∃
x
A
(
x
)
P
(
2
)
A
(
y
)
E
S
,
(
1
)
(
3
)
∀
x
(
A
(
x
)
→
B
(
x
)
)
P
(
4
)
A
(
y
)
→
B
(
y
)
U
S
,
(
3
)
(
5
)
B
(
y
)
T
,
(
2
)
,
(
4
)
,
I
(
6
)
∃
x
B
(
x
)
E
G
,
(
5
)
\begin{aligned} &(1)\ \exist xA(x) \quad &P&\\ &(2)\ A(y) \quad &ES, (1)&\\ &(3)\ \forall x(A(x) \to B(x)) \quad &P&\\ &(4)\ A(y) \to B(y) \quad &US, (3)&\\ &(5)\ B(y) \quad &T, (2), (4), I \\ &(6)\ \exist xB(x) \quad &EG,(5) \end{aligned}
(1) ∃xA(x)(2) A(y)(3) ∀x(A(x)→B(x))(4) A(y)→B(y)(5) B(y)(6) ∃xB(x)PES,(1)PUS,(3)T,(2),(4),IEG,(5)
例6:判断下列推理是否正确,并证明你的结论。
前提:
∀
x
(
P
(
x
)
→
R
(
x
)
)
\forall x(P(x) \to R(x))
∀x(P(x)→R(x)) ,
∀
x
(
Q
(
x
)
→
¬
R
(
x
)
)
\forall x(Q(x) \to \lnot R(x))
∀x(Q(x)→¬R(x))
结论:
∀
x
(
Q
(
x
)
→
¬
P
(
x
)
)
\forall x(Q(x) \to \lnot P(x))
∀x(Q(x)→¬P(x))
解:推理是正确的,证明过程如下:
(
1
)
∀
x
(
Q
(
x
)
→
¬
R
(
x
)
)
P
(
2
)
Q
(
y
)
→
¬
R
(
y
)
U
S
,
(
1
)
(
3
)
∀
x
(
P
(
x
)
→
R
(
x
)
)
P
(
4
)
P
(
y
)
→
R
(
y
)
U
S
,
(
3
)
(
5
)
¬
R
(
y
)
→
¬
P
(
y
)
T
,
(
4
)
,
E
(
逆
反
律
)
(
6
)
Q
(
y
)
→
¬
P
(
y
)
T
,
(
2
)
,
(
5
)
,
I
(
前
提
三
段
论
)
(
7
)
∀
x
(
Q
(
x
)
→
¬
P
(
x
)
)
U
G
,
(
6
)
\begin{aligned} &(1)\ \forall x(Q(x) \to \lnot R(x)) \quad& P \\ &(2)\ Q(y) \to \lnot R(y) \quad& US, (1)\\ &(3)\ \forall x(P(x) \to R(x)) \quad& P \\ &(4)\ P(y) \to R(y) \quad& US, (3)\\ &(5)\ \lnot R(y) \to \lnot P(y) \quad& T, (4), E(逆反律) \\ &(6)\ Q(y) \to \lnot P(y) \quad& T, (2), (5), I(前提三段论) \\ &(7)\ \forall x(Q(x) \to \lnot P(x)) \quad& UG, (6)\\ \end{aligned}
(1) ∀x(Q(x)→¬R(x))(2) Q(y)→¬R(y)(3) ∀x(P(x)→R(x))(4) P(y)→R(y)(5) ¬R(y)→¬P(y)(6) Q(y)→¬P(y)(7) ∀x(Q(x)→¬P(x))PUS,(1)PUS,(3)T,(4),E(逆反律)T,(2),(5),I(前提三段论)UG,(6)
例7:证明下列推理的有效性。
前提:
∃
x
(
S
(
x
)
∧
∀
y
(
T
(
y
)
→
L
(
x
,
y
)
)
)
\exist x(S(x) \land \forall y(T(y) \to L(x, y)))
∃x(S(x)∧∀y(T(y)→L(x,y))) ,
∀
x
(
S
(
x
)
→
∀
y
(
P
(
y
)
→
¬
L
(
x
,
y
)
)
)
\forall x(S(x) \to \forall y(P(y) \to \lnot L(x, y)))
∀x(S(x)→∀y(P(y)→¬L(x,y)))
结论:
∀
x
(
T
(
x
)
→
¬
P
(
x
)
)
\forall x(T(x) \to \lnot P(x))
∀x(T(x)→¬P(x))
解:
(
1
)
∃
x
(
S
(
x
)
∧
∀
y
(
T
(
y
)
→
L
(
x
,
y
)
)
)
P
(
2
)
S
(
a
)
∧
∀
y
(
T
(
y
)
→
L
(
a
,
y
)
)
E
S
,
(
1
)
(
3
)
S
(
a
)
T
,
(
2
)
,
I
(
化
简
式
)
(
4
)
∀
y
(
T
(
y
)
→
L
(
a
,
y
)
)
T
,
(
2
)
,
I
(
化
简
式
)
(
5
)
T
(
y
)
→
L
(
a
,
y
)
U
S
,
(
4
)
(
6
)
∀
x
(
S
(
x
)
→
∀
y
(
P
(
y
)
→
¬
L
(
x
,
y
)
)
)
P
(
7
)
S
(
a
)
→
∀
y
(
P
(
y
)
→
¬
L
(
a
,
y
)
)
U
S
,
(
6
)
(
8
)
∀
y
(
P
(
y
)
→
¬
L
(
a
,
y
)
)
T
,
(
3
)
,
(
7
)
,
I
(
假
言
推
理
)
(
9
)
P
(
y
)
→
¬
L
(
a
,
y
)
U
S
,
(
8
)
(
10
)
L
(
a
,
y
)
→
¬
P
(
y
)
T
,
(
9
)
,
E
(
逆
反
律
)
(
11
)
T
(
y
)
→
¬
P
(
y
)
T
,
(
5
)
,
(
10
)
,
I
(
假
言
推
理
)
(
12
)
∀
x
(
T
(
x
)
→
¬
P
(
x
)
)
U
G
,
(
11
)
\begin{aligned} &(1)\ \exist x(S(x) \land \forall y(T(y) \to L(x, y))) \quad& P \\ &(2)\ S(a) \land \forall y(T(y) \to L(a, y)) \quad& ES, (1)\\ &(3)\ S(a) \quad& T, (2), I(化简式) \\ &(4)\ \forall y(T(y) \to L(a, y)) \quad& T, (2), I(化简式) \\ &(5)\ T(y) \to L(a, y) \quad& US, (4)\\ &(6)\ \forall x(S(x) \to \forall y(P(y) \to \lnot L(x, y))) \quad& P \\ &(7)\ S(a) \to \forall y(P(y) \to \lnot L(a, y)) \quad& US, (6)\\ &(8)\ \forall y(P(y) \to \lnot L(a, y)) \quad& T, (3), (7), I(假言推理)\\ &(9)\ P(y) \to\lnot L(a, y) \quad& US, (8)\\ &(10)\ L(a, y) \to \lnot P(y) \quad& T, (9), E(逆反律)\\ &(11)\ T(y) \to \lnot P(y) \quad& T, (5), (10),I(假言推理)\\ &(12)\ \forall x(T(x) \to \lnot P(x)) \quad& UG, (11) \end{aligned}
(1) ∃x(S(x)∧∀y(T(y)→L(x,y)))(2) S(a)∧∀y(T(y)→L(a,y))(3) S(a)(4) ∀y(T(y)→L(a,y))(5) T(y)→L(a,y)(6) ∀x(S(x)→∀y(P(y)→¬L(x,y)))(7) S(a)→∀y(P(y)→¬L(a,y))(8) ∀y(P(y)→¬L(a,y))(9) P(y)→¬L(a,y)(10) L(a,y)→¬P(y)(11) T(y)→¬P(y)(12) ∀x(T(x)→¬P(x))PES,(1)T,(2),I(化简式)T,(2),I(化简式)US,(4)PUS,(6)T,(3),(7),I(假言推理)US,(8)T,(9),E(逆反律)T,(5),(10),I(假言推理)UG,(11)
例8:判断推理是否有效——所有事业有成就的人都是勤劳的人;存在一些勤劳的人,他们爱好业余写作;所以,有些事业有成就的人爱好业余写作。
解:设
S
(
x
)
S(x)
S(x):
x
x
x 是事业有成就的人,
Q
(
x
)
Q(x)
Q(x):
x
x
x 是勤劳的人,
Z
(
x
)
Z(x)
Z(x):
x
x
x 爱好业余写作,则符号化为:
∀
x
(
S
(
x
)
→
Q
(
x
)
)
,
∃
x
(
Q
(
x
)
∧
Z
(
x
)
)
⇒
∃
x
(
S
(
x
)
∧
Z
(
x
)
)
\forall x(S(x) \to Q(x)), \exist x(Q(x) \land Z(x)) \Rightarrow \exist x(S(x) \land Z(x))
∀x(S(x)→Q(x)),∃x(Q(x)∧Z(x))⇒∃x(S(x)∧Z(x))
经过分析,该论证是无效的,可以通过找出一个反例进行说明。取论域
D
=
{
a
,
b
}
D = \{a, b\}
D={a,b} ,
S
(
a
)
=
1
∧
S
(
b
)
=
0
∧
Q
(
a
)
=
1
∧
Q
(
b
)
=
1
∧
Z
(
a
)
=
0
∧
Z
(
b
)
=
1
S(a) = 1 \land S(b) = 0 \land Q(a) = 1\land Q(b) = 1 \land Z(a) = 0 \land Z(b) = 1
S(a)=1∧S(b)=0∧Q(a)=1∧Q(b)=1∧Z(a)=0∧Z(b)=1 ,则
∀
x
(
S
(
x
)
→
Q
(
x
)
)
\forall x(S(x) \to Q(x))
∀x(S(x)→Q(x)) 为真,
∃
x
(
Q
(
x
)
∧
Z
(
x
)
)
\exist x(Q(x) \land Z(x))
∃x(Q(x)∧Z(x)) 为真,所以前提为真,而
∃
x
(
S
(
x
)
∧
Z
(
x
)
)
\exist x(S(x) \land Z(x))
∃x(S(x)∧Z(x)) 为假,不是永真式。
例9:设论域是某班所有学生,用给定的命题及谓词将以下句子符号化,并推理其结论。
(1)如果今天有选修课,有些学生就不能按时到会;当且仅当所有学生都按时到会,干部选举才能准时进行。所以,如果干部选举准时进行,那么今天没有选修课。(
P
P
P :今天没有选修课,
Q
Q
Q :干部选举准时进行,
A
(
x
)
A(x)
A(x) :
x
x
x 按时到会)
解:命题可符号化为
¬
P
→
∃
x
¬
A
(
x
)
,
∀
x
A
(
x
)
↔
Q
⇒
Q
→
P
(
1
)
¬
P
→
∃
x
¬
A
(
x
)
P
(
2
)
P
∨
∃
x
¬
A
(
x
)
T
,
(
1
)
,
E
(
蕴
含
律
)
(
3
)
∃
x
(
¬
A
(
x
)
∨
P
)
T
,
(
2
)
,
E
(
量
词
辖
域
的
扩
张
律
)
(
4
)
¬
A
(
a
)
∨
P
E
S
,
(
3
)
(
5
)
A
(
a
)
→
P
T
,
(
4
)
,
E
(
蕴
含
律
)
(
6
)
∀
x
A
(
x
)
↔
Q
P
(
7
)
(
∀
x
A
(
x
)
→
Q
)
∧
(
Q
→
∀
x
A
(
x
)
)
T
,
(
6
)
,
E
(
双
条
件
律
)
(
8
)
Q
→
∀
x
A
(
x
)
T
,
(
7
)
,
I
(
化
简
式
)
(
9
)
∀
x
(
Q
→
A
(
x
)
)
T
,
(
8
)
,
E
(
量
词
辖
域
的
扩
张
律
)
(
10
)
Q
→
A
(
a
)
U
S
,
(
9
)
(
11
)
Q
→
P
T
,
(
5
)
,
(
8
)
,
I
(
前
提
三
段
论
)
\lnot P \to \exist x\lnot A(x),\ \forall xA(x) \leftrightarrow Q \Rightarrow Q \to P \\ {} \\ \begin{aligned} &(1)\ \lnot P \to \exist x\lnot A(x) \quad& P \\ &(2)\ P\lor \exist x\lnot A(x) \quad& T, (1),E(蕴含律) \\ &(3)\ \exist x(\lnot A(x) \lor P) \quad& T, (2), E(量词辖域的扩张律) \\ &(4)\ \lnot A(a) \lor P \quad& ES, (3) \\ &(5)\ A(a) \to P \quad& T, (4), E(蕴含律)\\ &(6)\ \forall xA(x) \leftrightarrow Q \quad& P \\ &(7)\ (\forall xA(x) \to Q) \land (Q \to \forall xA(x)) \quad& T, (6), E(双条件律)\\ &(8)\ Q\to \forall xA(x) \quad& T, (7), I(化简式)\\ &(9)\ \forall x(Q \to A(x)) \quad& T, (8), E(量词辖域的扩张律)\\ &(10)\ Q \to A(a) \quad& US, (9)\\ &(11)\ Q \to P \quad& T, (5), (8), I(前提三段论)\\ \end{aligned}
¬P→∃x¬A(x), ∀xA(x)↔Q⇒Q→P(1) ¬P→∃x¬A(x)(2) P∨∃x¬A(x)(3) ∃x(¬A(x)∨P)(4) ¬A(a)∨P(5) A(a)→P(6) ∀xA(x)↔Q(7) (∀xA(x)→Q)∧(Q→∀xA(x))(8) Q→∀xA(x)(9) ∀x(Q→A(x))(10) Q→A(a)(11) Q→PPT,(1),E(蕴含律)T,(2),E(量词辖域的扩张律)ES,(3)T,(4),E(蕴含律)PT,(6),E(双条件律)T,(7),I(化简式)T,(8),E(量词辖域的扩张律)US,(9)T,(5),(8),I(前提三段论)
(2)每个研究生或者是推荐免试者,或者是统考选拔者;所有的推荐免试者的本科课程都学得好,但并非所有研究生本科课程都学得好。所以一定有研究生是统考选拔者。(
P
(
x
)
P(x)
P(x) :
x
x
x 是研究生,
Q
(
x
)
Q(x)
Q(x) :
x
x
x 本科课程学得好,
A
(
x
)
A(x)
A(x) :
x
x
x 是推荐免试者,
B
(
x
)
B(x)
B(x) :
x
x
x 是统考选拔者)。
解:命题可符号化为
∀
x
(
P
(
x
)
→
(
A
(
x
)
∨
B
(
x
)
)
)
,
∀
x
(
A
(
x
)
→
Q
(
x
)
)
,
¬
∀
x
(
P
(
x
)
→
Q
(
x
)
)
⇒
∃
x
(
P
(
x
)
∧
B
(
x
)
)
(
1
)
¬
∀
x
(
P
(
x
)
→
Q
(
x
)
)
P
(
2
)
∃
x
¬
(
P
(
x
)
→
Q
(
x
)
)
T
,
(
1
)
,
E
(
量
词
的
否
定
律
)
(
3
)
¬
(
P
(
a
)
→
Q
(
a
)
)
E
S
,
(
2
)
(
4
)
P
(
a
)
∧
¬
Q
(
a
)
T
,
(
3
)
,
E
(
蕴
含
律
,
德
摩
根
律
)
(
5
)
P
(
a
)
T
,
(
4
)
,
I
(
化
简
式
)
(
6
)
¬
Q
(
a
)
T
,
(
4
)
,
I
(
化
简
式
)
(
7
)
∀
x
(
P
(
x
)
→
(
A
(
x
)
∨
B
(
x
)
)
)
P
(
8
)
P
(
a
)
→
(
A
(
a
)
∨
B
(
a
)
)
U
S
,
(
7
)
(
9
)
A
(
a
)
∨
B
(
a
)
T
,
(
5
)
,
(
8
)
,
I
(
假
言
推
理
)
(
10
)
∀
x
(
A
(
x
)
→
Q
(
x
)
)
P
(
11
)
A
(
a
)
→
Q
(
a
)
U
S
,
(
10
)
(
12
)
¬
A
(
a
)
T
,
(
6
)
,
(
11
)
,
I
(
拒
取
式
)
(
13
)
B
(
a
)
T
,
(
9
)
,
(
12
)
,
I
(
析
取
三
段
论
)
(
14
)
P
(
a
)
∧
B
(
a
)
T
,
(
5
)
,
(
13
)
,
I
(
直
推
式
)
(
15
)
∃
x
(
P
(
x
)
∧
B
(
x
)
)
E
G
,
(
14
)
\forall x(P(x) \to (A(x) \lor B(x))), \forall x(A(x) \to Q(x)), \lnot \forall x(P(x) \to Q(x))\\ \Rightarrow \exist x(P(x) \land B(x))\\ \\ {} \\ \begin{aligned} &(1)\ \lnot \forall x(P(x) \to Q(x))\ \quad& P \\ &(2)\ \exist x\lnot (P(x) \to Q(x)) \quad& T, (1), E(量词的否定律) \\ &(3)\ \lnot (P(a) \to Q(a)) \quad& ES, (2) \\ &(4)\ P(a) \land \lnot Q(a) \quad& T, (3), E(蕴含律,德摩根律) \\ &(5)\ P(a) \quad& T, (4), I(化简式)\\ &(6)\ \lnot Q(a) \quad& T, (4), I(化简式) \\ &(7)\ \forall x(P(x) \to (A(x) \lor B(x))) \quad& P\\ &(8)\ P(a) \to (A(a) \lor B(a)) \quad& US, (7)\\ &(9)\ A(a) \lor B(a) \quad& T, (5), (8), I(假言推理)\\ &(10)\ \forall x(A(x) \to Q(x)) \quad& P\\ &(11)\ A(a) \to Q(a) \quad& US, (10)\\ &(12)\ \lnot A(a) \quad& T, (6), (11), I(拒取式)\\ &(13)\ B(a) \quad& T, (9), (12), I(析取三段论)\\ &(14)\ P(a) \land B(a) \quad& T, (5), (13), I(直推式)\\ &(15)\ \exist x(P(x) \land B(x)) \quad& EG, (14) \end{aligned}
∀x(P(x)→(A(x)∨B(x))),∀x(A(x)→Q(x)),¬∀x(P(x)→Q(x))⇒∃x(P(x)∧B(x))(1) ¬∀x(P(x)→Q(x)) (2) ∃x¬(P(x)→Q(x))(3) ¬(P(a)→Q(a))(4) P(a)∧¬Q(a)(5) P(a)(6) ¬Q(a)(7) ∀x(P(x)→(A(x)∨B(x)))(8) P(a)→(A(a)∨B(a))(9) A(a)∨B(a)(10) ∀x(A(x)→Q(x))(11) A(a)→Q(a)(12) ¬A(a)(13) B(a)(14) P(a)∧B(a)(15) ∃x(P(x)∧B(x))PT,(1),E(量词的否定律)ES,(2)T,(3),E(蕴含律,德摩根律)T,(4),I(化简式)T,(4),I(化简式)PUS,(7)T,(5),(8),I(假言推理)PUS,(10)T,(6),(11),I(拒取式)T,(9),(12),I(析取三段论)T,(5),(13),I(直推式)EG,(14)