本文属于「离散数学」系列文章之一。这一系列着重于离散数学的学习和应用。由于内容随时可能发生更新变动,欢迎关注和收藏离散数学系列文章汇总目录一文以作备忘。此外,在本系列学习文章中,为了透彻理解数学知识,本人参考了诸多博客、教程、文档、书籍等资料。以下是本文的不完全参考目录,在后续学习中还会逐渐补充:
- (国外经典教材)离散数学及其应用 第七版
Discrete Mathematics and Its Applications 7th
,作者是Kenneth H.Rosen
,袁崇义译,机械工业出版社- 离散数学 第二版,武波等编著,西安电子科技大学出版社,2006年
- 离散数学 第三版,方世昌等编著,西安电子科技大学出版社,2013年
- (经典参考书及其题解)离散数学/离散数学——理论•分析•题解,左孝凌、李为鉴、刘永才编著,上海科学技术文献出版社
- 离散数学习题集:数理逻辑与集合论分册,耿素云;图论分册,耿素云;抽象代数分册, 张立昂。北京大学出版社
8. 关系的闭包运算
前面介绍了集合上二元关系的五种特性:自反性、反自反性、对称性、反对称性、传递性。对于一个集合上的二元关系,可以通过增加必要的序偶,使其满足自反、对称或传递性。为此,这里引入关系的闭包 closure
运算。
8.1 闭包的定义
定义8.1.1 设 R R R 是集合 A A A 上的二元关系,如果 A A A 上另外一个二元关系 R ′ R' R′ 满足:
(1) R ′ R' R′ 是自反的(对称的、传递的);
(2) R ⊆ R ′ R \subseteq R' R⊆R′ ;
(3)对于 A A A 上的任何自反的(对称的、传递的)关系 R ′ ′ R'' R′′ ,若 R ⊆ R ′ ′ R \subseteq R'' R⊆R′′ ,有 R ′ ⊆ R ′ ′ R' \subseteq R'' R′⊆R′′ ,则称 R ′ R' R′ 是 R R R 的自反(对称、传递)闭包。
集合 A A A 上二元关系 R R R 的自反闭包 reflexive closure
、对称闭包 symmetric closure
、传递闭包 transitive closure
分别记为 r ( R ) , s ( R ) , t ( R ) r(R), s(R), t(R) r(R),s(R),t(R) 。由定义可知, R R R 的自反闭包 r ( R ) r(R) r(R) 、对称闭包 s ( R ) s(R) s(R) 、传递闭包 t ( R ) t(R) t(R) 分别是包含 R R R 的最小的、自反的(对称的、传递的)关系。
定理8.1.1 设 R R R 是集合 A A A 上的二元关系,则有:
(1) R R R 是自反的当且仅当 r ( R ) = R r(R) = R r(R)=R ;
(2) R R R 是对称的当且仅当 s ( R ) = R s(R) = R s(R)=R ;
(3) R R R 是传递的当且仅当 t ( R ) = R t(R) = R t(R)=R 。
证明
(1)要证明必要性和充分性。
- 必要性。若 R R R 是自反的,令 R ′ = R R' = R R′=R 。显然, R ′ R' R′ 满足定义8.1.1中关于自反闭包的约束条件,即 R ′ R' R′ 是自反的、 R ⊆ R ′ R\subseteq R' R⊆R′ 、对于 A A A 上的任何自反关系 R ′ ′ R'' R′′ 若 R ⊆ R ′ ′ R \subseteq R'' R⊆R′′ 则一定有 R ′ ⊆ R ′ ′ R' \subseteq R'' R′⊆R′′ 。所以 r ( R ) = R ′ = R r(R) = R' = R r(R)=R′=R 。
- 充分性。若 r ( R ) = R r(R) = R r(R)=R ,因为 r ( R ) r(R) r(R) 是自反的,所以 R R R 也是自反的。
(2)要证明必要性和充分性。
- 必要性。若 R R R 是对称的,令 R ′ = R R' = R R′=R 。显然, R ′ R' R′ 满足定义8.1.1中关于对称闭包的约束条件,即 R ′ R' R′ 是对称的、 R ⊆ R ′ R\subseteq R' R⊆R′ 、对于 A A A 上的任何对称关系 R ′ ′ R'' R′′ 若 R ⊆ R ′ ′ R \subseteq R'' R⊆R′′ 则一定有 R ′ ⊆ R ′ ′ R' \subseteq R'' R′⊆R′′ 。所以 s ( R ) = R ′ = R s(R) = R' = R s(R)=R′=R 。
- 充分性。若 s ( R ) = R s(R)= R s(R)=R ,因为 s ( R ) s(R) s(R) 是对称的,所以 R R R 也是对称的。
(3)要证明必要性和充分性。
- 必要性。若 R R R 是传递的,令 R ′ = R R' = R R′=R 。显然, R ′ R' R′ 满足定义8.1.1中关于传递闭包的约束条件,即 R ′ R' R′ 是传递的、 R ⊆ R ′ R\subseteq R' </