《离散数学》集合论笔记

这篇笔记详细介绍了集合论的基础知识,包括集合的定义、子集、相等、真子集和空集的概念,以及幂集和全集的定义。此外,还探讨了集合的基本运算,如交集、并集、补集和对称差,并详细阐述了集合运算的律,如幂等律、交换律、结合律、分配律等。最后,讨论了有穷集的基数和容斥原理在元素计数中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、集合的基本概念

1.1 集合的定义

1.1.1 集合的定义:

由一个或多个确定的元素所构成的整体。

1.1.2 子集

设A、B为集合,如果B中的每个元素都是A中的元素,则称B为A的子集,也称A包含B,B(包)含于A,或B被A包含,记作 B ⊆ A B \subseteq A BA,如果B不被A包含,则记作
B ⊈ A B \not\subseteq A BA,包含的符号化表示为:

B ⊆ A ⇔ ∀ x ( x ∈ B → x ∈ A ) B \subseteq A \Leftrightarrow \forall x(x \in B \rightarrow x \in A) BAx(xBxA)

一个集合包含自身,也含于自身。

1.1.3 集合相等

设A、B为集合,如果 A ⊆ B A \subseteq B AB B ⊆ A B \subseteq A BA,则称A与B相等,记作 A = B A = B A=B,符号表示为:

A = B ⇔ A ⊆ B ∧ B ⊆ A A = B \Leftrightarrow A \subseteq B \wedge B \subseteq A A=BABBA

如果A和B不相等,则记作 A ≠ B A \neq B A=B.

两个集合相等的充分必要条件是它们具有相同的元素。

1.1.4 真子集

设A、B为集合,如果 B ⊆ A B \subseteq A BA B ≠ A B \neq A B=A,则称B是A的真子集,记作 B ⊂ A B \subset A BA B ⫋ A B \subsetneqq A BA

如果B不是A的真子集,则记作 B ⊄ A B \not\subset A BA ,这时,或者 B ⊈ A B \not\subseteq A BA,或者 B = A B = A B=A

1.1.5 空集

不含任何元素的集合称为空集,记作 ∅ \emptyset ,空集可以符号化表示为:

∅ = { x ∣ x ≠ x } \emptyset = \{ x \mid x \neq x \} ={ xx=x}

空集是客观存在的,比如 A = { x ∣ x ∈ R ∧ x 2 + 1 = 0 } A = \{ x \mid x \in \textbf{R} \wedge x^2 + 1 = 0 \} A={ xxRx2+1=0} 是方程 x 2 + 1 = 0 x^2 + 1 = 0 x2+1=0 的实数解集,因为该方程没有实数解,所以 A = ∅ A = \emptyset A=

空集是一切集合的子集。

1.1.6 幂集

含有n个元素的集合简称n元集,它的含有m( m ≤ n m \leq n mn)个元素的子集称为它的m元子集。

对于n元集A,它的m( 0 ≤ m ≤ n 0 \leq m \leq n 0mn)元子集有 C n m C_{n}^{m} Cnm 个,子集总数是

C n 0 + C n 1 + C n n = 2 n C_{n}^{0} + C_{n}^{1} + C_{n}^{n} = 2^n Cn0+Cn1+Cnn=2n

1.1.7 全集

在一个具体问题中,如果所涉及的集合都是某个集合的子集,则称这个集合为全集,记作 E E E (或 U U U

1.2 集合符号对应的Tex语法
集合 符号 Tex语法
大括号 { . . . } \{ ... \} { ...} \ { … \ }
分隔线 ∣ \mid \mid
属于 ∈ \in \in
不属于 ∉ \not\in \not\in
包含于 ⊆ \subseteq \subseteq
真包含于 ⫋ \subsetneqq \subsetneqq
不包含于 ⊈ \not\subseteq \not\subseteq
包含 ⊇ \supseteq \supseteq
真包含 ⫌ \supsetneqq \supsetneqq
不包含 ⊉ \not\supseteq \not\supseteq
空集 ∅ \emptyset \emptyset
∩ \cap \cap
∪ \cup \cup
A的补集 ∁ U A \complement _U A UA \complement _U A
减去 ∖ \setminus \setminus
A的闭包 A ‾ \overline{A} A \overline{A}
数集 N \mathbb{N} N R \mathbb{R} R Z \mathbb{Z} Z \mathbb{N} \mathbb{R} \mathbb{Z}

二、集合的基本运算

2.1 交、并、补

2.1.1 交集

A ∩ B = { x ∣ x ∈ A ∧ x ∈ B } A \cap B = \{x \mid x \in A \wedge x \in B\} AB={ xxAxB}

2.1.2 并集

A ∪ B = { x ∣ x ∈ A ∨ x ∈ B } A \cup B = \{x \mid x \in A \vee x \in B\} AB={ xxAxB}

2.1.3 相对补集

A − B = { x ∣ x ∈ A ∧ x ∉ B } A - B = \{x \mid x \in A \wedge x \not\in B\} AB={ xxAxB}
B对A的相对补集A-B由属于A但不属于B的元素构成

2.1.4 绝对补集

设E为全集, A ⊆ E A \subseteq E AE,则称A对E相对补集为A的绝对补集,记作 ∼ A \sim A A
∼ A = E − A = { x ∣ x ∈ E ∧ x ∉ A } \sim A = E - A = \{x \mid x \in E \wedge x \not\in A\} A=EA={ xxExA}

因为E为全集,在所研究的问题中,任何集合的元素x都是E的元素,也就是说, x ∈ E x \in E xE 是真命题,所以 ∼ A \sim A A 可以定义为: ∼ A = x ∣ x ∉ A \sim A = {x \mid x \not\in A} A=xxA

2.1.5 对称差

设A、B为集合,则A与B的对称差记作 A ⨁ B A \bigoplus B AB A Δ B A \Delta B AΔB

A Δ B = ( A − B ) ∪ ( B − A ) A \Delta B = (A - B) \cup (B - A)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值