一、集合的基本概念
1.1 集合的定义
1.1.1 集合的定义:
由一个或多个确定的元素所构成的整体。
1.1.2 子集
设A、B为集合,如果B中的每个元素都是A中的元素,则称B为A的子集,也称A包含B,B(包)含于A,或B被A包含,记作 B ⊆ A B \subseteq A B⊆A,如果B不被A包含,则记作
B ⊈ A B \not\subseteq A B⊆A,包含的符号化表示为:
B ⊆ A ⇔ ∀ x ( x ∈ B → x ∈ A ) B \subseteq A \Leftrightarrow \forall x(x \in B \rightarrow x \in A) B⊆A⇔∀x(x∈B→x∈A)
一个集合包含自身,也含于自身。
1.1.3 集合相等
设A、B为集合,如果 A ⊆ B A \subseteq B A⊆B 且 B ⊆ A B \subseteq A B⊆A,则称A与B相等,记作 A = B A = B A=B,符号表示为:
A = B ⇔ A ⊆ B ∧ B ⊆ A A = B \Leftrightarrow A \subseteq B \wedge B \subseteq A A=B⇔A⊆B∧B⊆A
如果A和B不相等,则记作 A ≠ B A \neq B A=B.
两个集合相等的充分必要条件是它们具有相同的元素。
1.1.4 真子集
设A、B为集合,如果 B ⊆ A B \subseteq A B⊆A 且 B ≠ A B \neq A B=A,则称B是A的真子集,记作 B ⊂ A B \subset A B⊂A 或 B ⫋ A B \subsetneqq A B⫋A
如果B不是A的真子集,则记作 B ⊄ A B \not\subset A B⊂A ,这时,或者 B ⊈ A B \not\subseteq A B⊆A,或者 B = A B = A B=A
1.1.5 空集
不含任何元素的集合称为空集,记作 ∅ \emptyset ∅,空集可以符号化表示为:
∅ = { x ∣ x ≠ x } \emptyset = \{ x \mid x \neq x \} ∅={ x∣x=x}
空集是客观存在的,比如 A = { x ∣ x ∈ R ∧ x 2 + 1 = 0 } A = \{ x \mid x \in \textbf{R} \wedge x^2 + 1 = 0 \} A={ x∣x∈R∧x2+1=0} 是方程 x 2 + 1 = 0 x^2 + 1 = 0 x2+1=0 的实数解集,因为该方程没有实数解,所以 A = ∅ A = \emptyset A=∅
空集是一切集合的子集。
1.1.6 幂集
含有n个元素的集合简称n元集,它的含有m( m ≤ n m \leq n m≤n)个元素的子集称为它的m元子集。
对于n元集A,它的m( 0 ≤ m ≤ n 0 \leq m \leq n 0≤m≤n)元子集有 C n m C_{n}^{m} Cnm 个,子集总数是
C n 0 + C n 1 + C n n = 2 n C_{n}^{0} + C_{n}^{1} + C_{n}^{n} = 2^n Cn0+Cn1+Cnn=2n
1.1.7 全集
在一个具体问题中,如果所涉及的集合都是某个集合的子集,则称这个集合为全集,记作 E E E (或 U U U)
1.2 集合符号对应的Tex语法
集合 | 符号 | Tex语法 |
---|---|---|
大括号 | { . . . } \{ ... \} { ...} | \ { … \ } |
分隔线 | ∣ \mid ∣ | \mid |
属于 | ∈ \in ∈ | \in |
不属于 | ∉ \not\in ∈ | \not\in |
包含于 | ⊆ \subseteq ⊆ | \subseteq |
真包含于 | ⫋ \subsetneqq ⫋ | \subsetneqq |
不包含于 | ⊈ \not\subseteq ⊆ | \not\subseteq |
包含 | ⊇ \supseteq ⊇ | \supseteq |
真包含 | ⫌ \supsetneqq ⫌ | \supsetneqq |
不包含 | ⊉ \not\supseteq ⊇ | \not\supseteq |
空集 | ∅ \emptyset ∅ | \emptyset |
交 | ∩ \cap ∩ | \cap |
并 | ∪ \cup ∪ | \cup |
A的补集 | ∁ U A \complement _U A ∁UA | \complement _U A |
减去 | ∖ \setminus ∖ | \setminus |
A的闭包 | A ‾ \overline{A} A | \overline{A} |
数集 | N \mathbb{N} N R \mathbb{R} R Z \mathbb{Z} Z | \mathbb{N} \mathbb{R} \mathbb{Z} |
二、集合的基本运算
2.1 交、并、补
2.1.1 交集
A ∩ B = { x ∣ x ∈ A ∧ x ∈ B } A \cap B = \{x \mid x \in A \wedge x \in B\} A∩B={ x∣x∈A∧x∈B}
2.1.2 并集
A ∪ B = { x ∣ x ∈ A ∨ x ∈ B } A \cup B = \{x \mid x \in A \vee x \in B\} A∪B={ x∣x∈A∨x∈B}
2.1.3 相对补集
A − B = { x ∣ x ∈ A ∧ x ∉ B } A - B = \{x \mid x \in A \wedge x \not\in B\} A−B={
x∣x∈A∧x∈B}
B对A的相对补集A-B由属于A但不属于B的元素构成
2.1.4 绝对补集
设E为全集, A ⊆ E A \subseteq E A⊆E,则称A对E相对补集为A的绝对补集,记作 ∼ A \sim A ∼A,
∼ A = E − A = { x ∣ x ∈ E ∧ x ∉ A } \sim A = E - A = \{x \mid x \in E \wedge x \not\in A\} ∼A=E−A={
x∣x∈E∧x∈A}
因为E为全集,在所研究的问题中,任何集合的元素x都是E的元素,也就是说, x ∈ E x \in E x∈E 是真命题,所以 ∼ A \sim A ∼A 可以定义为: ∼ A = x ∣ x ∉ A \sim A = {x \mid x \not\in A} ∼A=x∣x∈A
2.1.5 对称差
设A、B为集合,则A与B的对称差记作 A ⨁ B A \bigoplus B A⨁B 或 A Δ B A \Delta B AΔB,
A Δ B = ( A − B ) ∪ ( B − A ) A \Delta B = (A - B) \cup (B - A)