全面小白分析如何使用tensorflow2.0中Model子类化创建自定义模型

在讲清楚如何使用Model子类化创建自定义模型的之前,需要跟大家讲清楚如何使用layers.Layer子类化创建自定义层。通常我们将很多很多层堆叠在一起称之为模型,实际上,一个网络层也是一个模型,只是这个模型很小,就只有一个层而已。所以从本质上,自定义模型层也就是在自定义模型,自定义模型也是在自定义层。

思考一个问题,如何自定义层?本文以实现下面DBL层为例进行自定义层的讲解
在这里插入图片描述
分析上面结构图,我们发现,我们需要卷积层(这个现有),BN层(这个也是现有),Leaky relu层(还是现有)。我们现在使用Sequential的方法来构建这个网络结构。代码如下,注意看代码注释,注意看代码注释,注意看代码注释

from tensorflow.keras import Sequential, layers

# 解决问题:“Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR”,而需要增加下面五条代码
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)




# 定义网络结构层
my_name_is_learning_model = Sequential(
    [
        layers.Conv2D(filters=32, kernel_size=3, strides=2, padding='same'),
        layers.BatchNormalization(),
        layers.LeakyReLU(alpha=0.3)
    ]
)

my_name_is_learning_model.build(input_shape=(None, 28, 28, 1))  # 指定网络my_name_is_learning_model的输入形状

import tensorflow as tf

x = tf.Variable(initial_value=tf.random.normal(shape=(32, 28, 28, 1)))  # 随便构造一个数据

out = my_name_is_learning_model(x)  # my_name_is_learning_model就是我们想要的自定义的模型

pass

这样子虽然是可以实现,但是如果你需要用到很多次很多次这样的代码块,每次用到你都需要重复写一次,是不是很繁琐。那有没有我们只写一遍,然后就可以无限调用的呢?还真有。这就是自定义层的由来。

如何自定义层,看下面代码,分析过程写在注释上面,注意看代码注释,注意看代码注释,注意看代码注释。

from tensorflow.keras import Sequential, layers

# 解决问题:“Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR”,而需要增加下面五条代码
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession

config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)


class DBL(layers.Layer):  # 新定义一个自己想要的类,并且继承这个类tensorflow.keras.layers.Layer

    # 需要重写初始化方法,在这个方法里面堆叠网络结构层
    def __init__(self, alpha, **kwargs):  # 里面可以自己传递想要的参数,这里我只设置了一个参数alpha
        super(DBL, self).__init__(**kwargs)  # 表示继承了夫类的方法,格式如下:super(自定义类名, self).__init__(**kwargs)

        # 开始堆叠网络结构层,这些网络结构层都是之前我们所知道的
        self.layer1 = layers.Conv2D(filters=32, kernel_size=3, strides=2, padding='same')
        self.layer2 = layers.BatchNormalization()
        self.layer3 = layers.LeakyReLU(alpha=alpha)

    def call(self, inputs, **kwargs):  # 使用call方法来定义网络数据的正向传播
        x1 = self.layer1(inputs)  # 格式 输出 = 网络层(输入)
        x2 = self.layer2(x1)
        x3 = self.layer3(x2)

        return x3  # 返回输出


# 如何使用自定义层
# 第一步,实例化自定义层的类
my_name_is_learning_model = DBL(alpha=0.3)
import tensorflow as tf

x = tf.Variable(initial_value=tf.random.normal(shape=(32, 28, 28, 1)))  # 随便构造一个数据

out = my_name_is_learning_model(x)  # my_name_is_learning_model就是我们想要的自定义的层

# 以后我们想要使用的时候,实例化之后就可以调用了。
pass

自定义之后,如果我们想要构建拥有三个DBL结构的神经网络,我们该如何构建?我们使用函数式API的方式进行构建,超级简单,看下面代码,分析过程写在注释上面,注意看代码注释,注意看代码注释,注意看代码注释。

from tensorflow.keras import Sequential, layers, models

# 解决问题:“Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR”,而需要增加下面五条代码
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession

config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)


class DBL(layers.Layer):  # 新定义一个自己想要的类,并且继承这个类tensorflow.keras.layers.Layer

    # 需要重写初始化方法,在这个方法里面堆叠网络结构层
    def __init__(self, alpha, **kwargs):  # 里面可以自己传递想要的参数,这里我只设置了一个参数alpha
        super(DBL, self).__init__(**kwargs)  # 表示继承了夫类的方法,格式如下:super(自定义类名, self).__init__(**kwargs)

        # 开始堆叠网络结构层,这些网络结构层都是之前我们所知道的
        self.layer1 = layers.Conv2D(filters=32, kernel_size=3, strides=2, padding='same')
        self.layer2 = layers.BatchNormalization()
        self.layer3 = layers.LeakyReLU(alpha=alpha)

    def call(self, inputs, **kwargs):  # 使用call方法来定义网络数据的正向传播
        x1 = self.layer1(inputs)  # 格式 输出 = 网络层(输入)
        x2 = self.layer2(x1)
        x3 = self.layer3(x2)

        return x3  # 返回输出


def sangeDBL():
    input_img = layers.Input(shape=(28, 28, 1))  # 定义输入尺寸,input_img为(None, 28, 28, 1)

    x1 = DBL(alpha=0.1)(input_img)  # 格式:输出 = 实例对象(输入)
    x2 = DBL(alpha=0.1)(x1)  # 格式:输出 = 实例对象(输入)
    x3 = DBL(alpha=0.1)(x2)  # 格式:输出 = 实例对象(输入)

    model = models.Model(inputs=input_img, outputs=x3)  # 定义输入输出
    return model


# 使用sangeBDL模型
import tensorflow as tf

x = tf.Variable(initial_value=tf.random.normal(shape=(32, 28, 28, 1)))  # 随便构造一个数据

model = sangeDBL()  # 调用函数,返回一个模型对象
out = model(x)  # 调用一次模型进行输出
pass

恭喜你又学习到了一点新知识,结合以前两篇讲解,相信你对神经网络的搭建也有了自己的认识。以前两篇博客地址为:
全面小白分析如何使用tensorflow2.0中的Sequential按层顺序创建模型
全面小白分析如何使用tensorflow2.0中的函数式API创建任意结构模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值