官方英文原文链接:https://docs.vllm.ai/en/stable/getting_started/quickstart.html
文章目录
快速开始
本指南将帮助您快速开始使用 vLLM 执行以下两个任务:
环境依赖
- 操作系统:Linux
- Python版本:3.9 - 3.12
安装vLLM
如果使用英伟达™(NVIDIA®)GPU,可以直接使用 pip 安装 vLLM。
建议使用 uv(一个非常快速的 Python 环境管理器)来创建和管理 Python 环境。请按照文档安装 uv。安装 uv 后,可以使用以下命令创建新的 Python 环境并安装 vLLM:
uv venv myenv --python 3.12 --seed
source myenv/bin/activate
uv pip install vllm
您还可以使用 conda 创建和管理 Python 环境。
conda create -n myenv python=3.12 -y
conda activate myenv
pip install vllm
注意:对于非 CUDA 平台,有关如何安装 vLLM 的具体说明,请参阅此处安装指引。
离线批量推理
安装 vLLM 后,您就可以开始为输入的提示词列表生成文本(即离线批量推理)。请参阅示例脚本:examples/offline_inference/basic/basic.py,脚本如下
该示例的第一行导入了 LLM
和 SamplingParams
这两个类:
- LLM 是使用 vLLM 引擎运行离线推理的主要类。
- SamplingParams 指定了采样过程的参数。
from vllm import LLM, SamplingParams
下一节定义了文本生成的输入提示和采样参数列表。采样温度设置为 0.8,核采样概率设置为 0.95。有关采样参数的更多信息,请点击此处。
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
LLM 类初始化 vLLM 引擎,和初始化用于离线推理的 OPT-125M 模型。支持的模型列表请点击此处。
llm = LLM(model="facebook/opt-125m")
注意:默认情况下,vLLM 从 HuggingFace 下载模型。如果您想使用来自 ModelScope 的模型,请在初始化引擎前设置环境变量 VLLM_USE_MODELSCOPE。
现在,使用 llm.generate 生成输出。它将输入提示添加到 vLLM 引擎的等待队列中,并执行 vLLM 引擎以高吞吐量的方式生成输出。输出以 RequestOutput 对象列表的形式返回,其中包括所有输出标记tokens。
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
提供在线服务
vLLM 可以作为实现 OpenAI API 协议的服务器来部署。这样,vLLM 就能直接替代使用 OpenAI API 的应用程序。默认情况下,它会在 http://localhost:8000 上启动服务器。你可以使用 --host 和 --port 参数指定地址。目前,服务器只能托管一个模型,并实现了如下接口功能:list models,create chat completion, create completion
运行以下命令,使用 Qwen2.5-1.5B-Instruct 模型启动 vLLM 服务器:
vllm serve Qwen/Qwen2.5-1.5B-Instruct
注意:默认情况下,服务器使用存储在
tokenizer
中的预定义聊天模板。您可以在此了解如何重载该模板。
该服务器的查询格式与 OpenAI API 相同。例如,返回可用模型列表:
curl http://localhost:8000/v1/models
您可以通过参数 --api-key
或环境变量 VLLM_API_KEY
,让服务器检查接口请求头中的 API 密钥。
使用 vLLM 的 OpenAI Completions 接口
服务器启动后,您可以通过输入提示词来进行模型推理:
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Qwen/Qwen2.5-1.5B-Instruct",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'
由于该服务器与 OpenAI API 兼容,因此您可以用它来替代任何使用 OpenAI API 的应用程序。例如,查询服务器的另一种方法是使用 openai Python
软件包:
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
completion = client.completions.create(model="Qwen/Qwen2.5-1.5B-Instruct",
prompt="San Francisco is a")
print("Completion result:", completion)
更详细的客户端示例可在此处找到:examples/online_serving/openai_completion_client.py,代码如下:
# SPDX-License-Identifier: Apache-2.0
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
# Completion API
stream = False
completion = client.completions.create(
model=model,
prompt="A robot may not injure a human being",
echo=False,
n=2,
stream=stream,
logprobs=3)
print("Completion results:")
if stream:
for c in completion:
print(c)
else:
print(completion)
使用 vLLM 的 OpenAI Chat Completions 接口
vLLM 还支持 OpenAI Chat Completions API。聊天界面是一种与模型进行交流的更动态、更互动的方式,允许进行可存储在聊天历史记录中的来回交流。这对于需要上下文或更详细解释的任务非常有用。
您可以使用 create chat completions 接口 与模型进行交互:
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Qwen/Qwen2.5-1.5B-Instruct",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who won the world series in 2020?"}
]
}'
或者,您也可以使用 openai
Python 软件包:
from openai import OpenAI
# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
chat_response = client.chat.completions.create(
model="Qwen/Qwen2.5-1.5B-Instruct",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Tell me a joke."},
]
)
print("Chat response:", chat_response)
使用docker部署
使用 vLLM 的官方 Docker 镜像
vLLM 提供用于部署的官方 Docker 映像。该镜像可用于运行兼容 OpenAI 的服务器,并以 vllm/vllm-openai 的形式出现在 Docker Hub 上。
docker run --runtime nvidia --gpus all \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=<secret>" \
-p 8000:8000 \
--ipc=host \
vllm/vllm-openai:latest \
--model mistralai/Mistral-7B-v0.1
您可以在图像标记 (vllm/vllm-openai:latest) 后添加任何其他引擎参数。
注意:可以使用
--ipc=host
标志或--shm-size
标志允许容器访问主机的共享内存。vLLM 使用 PyTorch,它使用共享内存在进程间共享数据,尤其适用于张量并行推理。
从源代码构建 vLLM 的 Docker 镜像
您可以通过提供的 Dockerfile 从源代码构建和运行 vLLM。构建 vLLM:
# optionally specifies: --build-arg max_jobs=8 --build-arg nvcc_threads=2
DOCKER_BUILDKIT=1 docker build . --target vllm-openai --tag vllm/vllm-openai
默认情况下,vLLM 将为所有 GPU 类型构建,以实现最广泛的分布。如果只为当前机器运行的 GPU 类型构建,可以添加参数
--build-arg torch_cuda_arch_list=“”
,让 vLLM 查找当前 GPU 类型并为其构建。
如果您使用的是 Podman 而不是 Docker,可能需要在运行 podman 生成命令时添加
--security-opt label=disable
来禁用 SELinux 标签,以避免某些现有问题。
使用定制的 vLLM Docker 映像
使用定制的 Docker 镜像运行 vLLM:
docker run --runtime nvidia --gpus all \
-v ~/.cache/huggingface:/root/.cache/huggingface \
-p 8000:8000 \
--env "HUGGING_FACE_HUB_TOKEN=<secret>" \
vllm/vllm-openai <args...>
参数 vllm/vllm-openai
指定要运行的映像,并应替换为自定义构建的映像名称(构建命令中的 -t
标记)。
仅适用于 0.4.1 和 0.4.2 版本–这些版本下的 vLLM docker 镜像应该在根用户下运行,因为在运行时需要加载根用户主目录下的一个库,即 /root/.config/vllm/nccl/cu12/libnccl.so.2.18.1。
如果在不同用户下运行容器,可能需要先更改库(以及所有父目录)的权限,允许用户访问,然后使用环境变量 VLLM_NCCL_SO_PATH=/root/.config/vllm/nccl/cu12/libnccl.so.2.18.1 运行 vLLM。
使用Kubernetes部署
使用 Kubernetes 部署 vLLM 是一种可扩展且高效的机器学习模型服务方式。本文将指导您完成使用 Kubernetes 部署 vLLM 的过程,包括必要的前提条件、部署步骤和测试。
前置条件
在开始之前,请确保您具备以下条件:
- 运行中的 Kubernetes 集群
- 英伟达 Kubernetes 设备插件(k8s-device-plugin): 请访问 https://github.com/NVIDIA/k8s-device-plugin/
- 集群中可用的 GPU 资源
部署步骤
- 为 vLLM 创建 PVC、Secret 和 Deployment
PVC 用于存储模型缓存,它是可选的,你可以使用 hostPath 或其他存储选项
PVC是PersistentVolumeClaim的缩写,它是Kubernetes中的一个资源对象,用于申请和使用持久化存储。在Kubernetes集群中,PVC扮演着类似“存储请求”的角色,它是由用户创建的,旨在绑定到某个合适的PersistentVolume(PV),从而为Pod提供持久化存储。
概念上,PVC允许用户无需关心底层存储技术的具体实现细节,就能方便地请求所需的存储资源。用户定义PVC时会指定存储的大小、访问模式等参数,而管理员则负责提供匹配这些声明的PersistentVolumes。一旦PVC与PV成功绑定,Pod就可以通过这个PVC来使用该持久化存储资源了。
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: mistral-7b
namespace: default
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 50Gi
storageClassName: default
volumeMode: Filesystem
Secret是可选项,只有访问gated
门控模型时才需要,如果不使用门控模型,可以跳过此步骤
apiVersion: v1
kind: Secret
metadata:
name: hf-token-secret
namespace: default
type: Opaque
stringData:
token: "REPLACE_WITH_TOKEN"
接下来为 vLLM 创建deployment
文件,以便运行模型服务器。下面的示例部署了 Mistral-7B-Instruct-v0.3 模型。
下面是使用 NVIDIA GPU 和 AMD GPU 的两个示例。
NVIDIA GPU:
apiVersion: apps/v1
kind: Deployment
metadata:
name: mistral-7b
namespace: default
labels:
app: mistral-7b
spec:
replicas: 1
selector:
matchLabels:
app: mistral-7b
template:
metadata:
labels:
app: mistral-7b
spec:
volumes:
- name: cache-volume
persistentVolumeClaim:
claimName: mistral-7b
# vLLM needs to access the host's shared memory for tensor parallel inference.
- name: shm
emptyDir:
medium: Memory
sizeLimit: "2Gi"
containers:
- name: mistral-7b
image: vllm/vllm-openai:latest
command: ["/bin/sh", "-c"]
args: [
"vllm serve mistralai/Mistral-7B-Instruct-v0.3 --trust-remote-code --enable-chunked-prefill --max_num_batched_tokens 1024"
]
env:
- name: HUGGING_FACE_HUB_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
ports:
- containerPort: 8000
resources:
limits:
cpu: "10"
memory: 20G
nvidia.com/gpu: "1"
requests:
cpu: "2"
memory: 6G
nvidia.com/gpu: "1"
volumeMounts:
- mountPath: /root/.cache/huggingface
name: cache-volume
- name: shm
mountPath: /dev/shm
livenessProbe:
httpGet:
path: /health
port: 8000
initialDelaySeconds: 60
periodSeconds: 10
readinessProbe:
httpGet:
path: /health
port: 8000
initialDelaySeconds: 60
periodSeconds: 5
AMD GPU:
如果使用 MI300X 等 AMD ROCm GPU,可以参考下面的 deployment.yaml。
apiVersion: apps/v1
kind: Deployment
metadata:
name: mistral-7b
namespace: default
labels:
app: mistral-7b
spec:
replicas: 1
selector:
matchLabels:
app: mistral-7b
template:
metadata:
labels:
app: mistral-7b
spec:
volumes:
# PVC
- name: cache-volume
persistentVolumeClaim:
claimName: mistral-7b
# vLLM needs to access the host's shared memory for tensor parallel inference.
- name: shm
emptyDir:
medium: Memory
sizeLimit: "8Gi"
hostNetwork: true
hostIPC: true
containers:
- name: mistral-7b
image: rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
securityContext:
seccompProfile:
type: Unconfined
runAsGroup: 44
capabilities:
add:
- SYS_PTRACE
command: ["/bin/sh", "-c"]
args: [
"vllm serve mistralai/Mistral-7B-v0.3 --port 8000 --trust-remote-code --enable-chunked-prefill --max_num_batched_tokens 1024"
]
env:
- name: HUGGING_FACE_HUB_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
ports:
- containerPort: 8000
resources:
limits:
cpu: "10"
memory: 20G
amd.com/gpu: "1"
requests:
cpu: "6"
memory: 6G
amd.com/gpu: "1"
volumeMounts:
- name: cache-volume
mountPath: /root/.cache/huggingface
- name: shm
mountPath: /dev/shm
您可以从ROCM/K8S-Device-Plugin中获得步骤和YAML文件的完整示例。
- 为 vLLM 创建 Kubernetes 服务
接下来,创建一个 Kubernetes 服务文件,用于暴露mistral-7b
这个deployment服务:
apiVersion: v1
kind: Service
metadata:
name: mistral-7b
namespace: default
spec:
ports:
- name: http-mistral-7b
port: 80
protocol: TCP
targetPort: 8000
# The label selector should match the deployment labels & it is useful for prefix caching feature
selector:
app: mistral-7b
sessionAffinity: None
type: ClusterIP
- 部署和测试
使用 kubectl apply -f <文件名> 应用部署和服务配置:
kubectl apply -f deployment.yaml
kubectl apply -f service.yaml
要测试部署,请运行以下 curl 命令:
curl http://mistral-7b.default.svc.cluster.local/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "mistralai/Mistral-7B-Instruct-v0.3",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'
如果服务部署正确,您应该会收到来自 vLLM 模型的响应。
使用Nginx部署
本章节展示了如何启动多个 vLLM 服务容器,并使用 Nginx 作为服务器之间的负载平衡器。
构建 Nginx 容器
本指南假定您刚刚克隆了 vLLM 项目,并且当前位于 vllm 根目录下。
export vllm_root=`pwd`
创建名为 Dockerfile.nginx 的文件:
FROM nginx:latest
RUN rm /etc/nginx/conf.d/default.conf
EXPOSE 80
CMD ["nginx", "-g", "daemon off;"]
构建容器:
docker build . -f Dockerfile.nginx --tag nginx-lb
创建简单的 Nginx 配置文件
创建名为 nginx_conf/nginx.conf
的文件。注意,你可以添加任意数量的服务器。在下面的示例中,我们先添加两个服务器。要添加更多服务器,请添加另一个服务器 vllmN:8000 max_fails=3 fail_timeout=10000s 到upstream backend里面
upstream backend {
least_conn;
server vllm0:8000 max_fails=3 fail_timeout=10000s;
server vllm1:8000 max_fails=3 fail_timeout=10000s;
}
server {
listen 80;
location / {
proxy_pass http://backend;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
}
}
构建 vLLM 容器
cd $vllm_root
docker build -f Dockerfile . --tag vllm
如果你使用的是代理,可以将代理设置传递给 docker build 命令,如下图所示:
cd $vllm_root
docker build -f Dockerfile . --tag vllm --build-arg http_proxy=$http_proxy --build-arg https_proxy=$https_proxy
创建 Docker 网络
docker network create vllm_nginx
启动 vLLM 容器
注意:
- 如果您在其他地方缓存了 HuggingFace 模型,请更新下面的
hf_cache_dir
。 - 如果您没有现有的 HuggingFace 缓存,则需要启动 vllm0 并等待模型下载完成和服务器准备就绪。这将确保 vllm1 可以使用刚刚下载的模型,而无需再次下载。
- 下面的示例假定使用的是 GPU 。如果使用的是 CPU ,请移除 --gpus all,并在 docker run 命令中添加
VLLM_CPU_KVCACHE_SPACE
和VLLM_CPU_OMP_THREADS_BIND
环境变量。 - 如果不想使用
Llama-2-7b-chat-hf
,请调整 vLLM 服务器中要使用的模型名称。
mkdir -p ~/.cache/huggingface/hub/
hf_cache_dir=~/.cache/huggingface/
docker run -itd --ipc host --privileged --network vllm_nginx --gpus all --shm-size=10.24gb -v $hf_cache_dir:/root/.cache/huggingface/ -p 8081:8000 --name vllm0 vllm --model meta-llama/Llama-2-7b-chat-hf
docker run -itd --ipc host --privileged --network vllm_nginx --gpus all --shm-size=10.24gb -v $hf_cache_dir:/root/.cache/huggingface/ -p 8082:8000 --name vllm1 vllm --model meta-llama/Llama-2-7b-chat-hf
注意:如果使用代理,可以通过 -e http_proxy= h t t p p r o x y − e h t t p s p r o x y = http_proxy -e https_proxy= httpproxy−ehttpsproxy=https_proxy,将代理设置传递给 docker run 命令。
启动 Nginx
docker run -itd -p 8000:80 --network vllm_nginx -v ./nginx_conf/:/etc/nginx/conf.d/ --name nginx-lb nginx-lb:latest
验证 vLLM 服务器是否准备就绪
docker logs vllm0 | grep Uvicorn
docker logs vllm1 | grep Uvicorn
两个输出应该是这样的
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)