D. Almost Identity Permutations
time limit per test 2 seconds
memory limit per test 256 megabytes
A permutation p of size n is an arraysuch that every integer from 1 to n occurs exactlyonce in this array.
Let's call a permutation analmost identitypermutation iff there existat least n - k indices i (1 ≤ i ≤ n) such that pi = i.
Your task is to count the number ofalmost identity permutationsfor given numbers n and k.
Input
The first line contains two integersn and k (4 ≤ n ≤ 1000,1 ≤ k ≤ 4).
Output
Print the number ofalmost identity permutationsfor given n and k.
Examples
Input
4 1
Output
1
Input
4 2
Output
7
Input
5 3
Output
31
Input
5 4
Output
76
【题意】
给出n和k计算满足至少有(n-k)个位置的值a[i]==i的1~n的全排列的个数。
【思路】
观察题目数据范围,发现k的取值范围只有1~4,故考虑能否直接分类讨论找出数学公式。
当k=1时,显然无法做到只有一个位置a[i]!=i,即只有一种全排列。
当k=2时,我们先去考虑有且只有两个位置a[i]!=i的数目,显然我们需要从1~n中取出一个二元组<i,j>(其中i<j),然后将他们每个二元组交换顺序即可,容易发现二元组数目为C(n,2),答案加上k=1的情况即可。
当k=3时,我们先去考虑有且只有三个位置a[i]!=i的数目,显然我们需要从1~n中取出一个三元组<i,j,k>(其中i<j<k),然后将他们每个三元组交换顺序且每个数都不在原来的位置上,容易发现三元组的数目为C(n,3),且对于每个二元组满足条件的排列数为2。
比如对于<1,2,3>来说,满足的交换顺序有<2,3,1>,<3,1,2>。
所以答案为三元组数目*2+(k=2的数目)+(k=1的数目)
当k=4时,同上面的分析可知,四元组的数目为C(n,4)
然后对于每个四元组,满足的排列数为9.
所以答案为四元组数目*9+(k=3的数目)+(k=2的数目)+(k=1的数目)
#include <cstdio>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
using namespace std;
#define mst(a,b) memset((a),(b),sizeof(a))
#define rush() int T;scanf("%d",&T);while(T--)
typedef long long ll;
const int maxn = 1000005;
const ll mod = 10;
const int INF = 0x3f3f3f3f;
const double eps = 1e-9;
int n,k;
ll C(int n,int k)
{
ll ans=1;
for(int i=n;i>=n-k+1;i--)
{
ans*=i;
}
for(int i=1;i<=k;i++)
{
ans/=i;
}
return ans;
}
int main()
{
while(~scanf("%d%d",&n,&k))
{
if(k==1) puts("1");
else if(k==2) printf("%I64d\n",C(n,2)+1);
else if(k==3) printf("%I64d\n",C(n,2)+1+C(n,3)*2);
else if(k==4) printf("%I64d\n",C(n,2)+1+C(n,3)*2+C(n,4)*9);
}
return 0;
}