Codeforces 888D - Almost Identity Permutations 【数学模拟】


D. Almost Identity Permutations


time limit per test 2 seconds

memory limit per test     256 megabytes


A permutation p of size n is an arraysuch that every integer from 1 to n occurs exactlyonce in this array.

Let's call a permutation analmost identitypermutation iff there existat least n - k indices i (1 ≤ i ≤ n) such that pi = i.

Your task is to count the number ofalmost identity permutationsfor given numbers n and k.

Input

The first line contains two integersn and k (4 ≤ n ≤ 1000,1 ≤ k ≤ 4).

Output

Print the number ofalmost identity permutationsfor given n and k.

Examples

Input

4 1

Output

1

Input

4 2

Output

7

Input

5 3

Output

31

Input

5 4

Output

76

 

【题意】


给出n和k计算满足至少有(n-k)个位置的值a[i]==i的1~n的全排列的个数。


【思路】


观察题目数据范围,发现k的取值范围只有1~4,故考虑能否直接分类讨论找出数学公式。


当k=1时,显然无法做到只有一个位置a[i]!=i,即只有一种全排列。


当k=2时,我们先去考虑有且只有两个位置a[i]!=i的数目,显然我们需要从1~n中取出一个二元组<i,j>(其中i<j),然后将他们每个二元组交换顺序即可,容易发现二元组数目为C(n,2),答案加上k=1的情况即可。


当k=3时,我们先去考虑有且只有三个位置a[i]!=i的数目,显然我们需要从1~n中取出一个三元组<i,j,k>(其中i<j<k),然后将他们每个三元组交换顺序且每个数都不在原来的位置上,容易发现三元组的数目为C(n,3),且对于每个二元组满足条件的排列数为2。


比如对于<1,2,3>来说,满足的交换顺序有<2,3,1>,<3,1,2>。


所以答案为三元组数目*2+(k=2的数目)+(k=1的数目)


当k=4时,同上面的分析可知,四元组的数目为C(n,4)


然后对于每个四元组,满足的排列数为9.


所以答案为四元组数目*9+(k=3的数目)+(k=2的数目)+(k=1的数目)


#include <cstdio>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
using namespace std;
#define mst(a,b) memset((a),(b),sizeof(a))
#define rush() int T;scanf("%d",&T);while(T--)

typedef long long ll;
const int maxn = 1000005;
const ll mod = 10;
const int INF = 0x3f3f3f3f;
const double eps = 1e-9;

int n,k;

ll C(int n,int k)
{
    ll ans=1;
    for(int i=n;i>=n-k+1;i--)
    {
        ans*=i;
    }
    for(int i=1;i<=k;i++)
    {
        ans/=i;
    }
    return ans;
}

int main()
{
    while(~scanf("%d%d",&n,&k))
    {
        if(k==1) puts("1");
        else if(k==2) printf("%I64d\n",C(n,2)+1);
        else if(k==3) printf("%I64d\n",C(n,2)+1+C(n,3)*2);
        else if(k==4) printf("%I64d\n",C(n,2)+1+C(n,3)*2+C(n,4)*9);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值