codeforces 888D Almost Identity Permutations (组合数+错排)

传送门codeforces 888D



题目大意

对于 1~n 的所有排列中满足至少有 n-k 个元素的下标和元素值相同的有多少个。



思路

至少有 n-k 个元素下标和元素值相同,也就是至多有 k 个元素下标和元素值不相同。注意,是不可能只存在 1 个元素的元素下标和元素值不相同的。


所以,我们可以从 n 个数中取出 i (0<= i <=k && i != 1)个数让它们互相交换顺序,使得它们的元素值和元素下标不相同。共有 C(n,i) 种取法,还要乘以它们交换顺序的方法,也就是错排数。


但是由于 k<=4 ,所以可以不用这么麻烦,从给定的样例可以得知 k=3 时错排数为 2,k=4 时错排数为 9,其他时候为 1.  怎么得出的呢?样例 5 3 为 31,5 4为 76,只多了个 C(5,4)=5,但是结果却增加了 45,所以 k=4 是错排数为 9. 当然错排数也可以利用公式直接得出。


所以只要求出 C(n,i) * 错排数 的和就可以了。注意 i 不能为 1,因为不可能只存在一个元素的下标和值不同。



代码

#include<stdio.h>
#include<string.h>
typedef long long LL;

LL c[1010][6];

void C()
{ //求组合数 
	int i,j;
	c[0][0]=1;
	for(i=0;i<1005;i++) c[i][0]=1;
	for(i=1;i<1005;i++)
		for(j=1;j<5&&j<=i;j++)
		{
			if(j==i) c[i][j]=1;
			else c[i][j]=c[i-1][j-1]+c[i-1][j];
		}			
}

int main()
{
	int i,n,k;
	LL ans;
	C();
	while(~scanf("%d%d",&n,&k))
	{
		ans=0;
		for(i=0;i<=k;i++)
		{
			if(i==3) ans+=c[n][i]*2; //组合数 * 错排数 
			else if(i==4) ans+=c[n][i]*9;
			else if(i!=1) ans+=c[n][i];
		}
		printf("%lld\n",ans);
	}
	return 0;
}


  • 4
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值