# Numpy 笔记(二): 多维数组的切片(slicing)和索引(indexing)

## 切片(slicing)操作

Numpy 中多维数组的切片操作与 Python 中 list 的切片操作一样，同样由 start, stop, step 三个部分组成

import numpy as np

arr = np.arange(12)
print 'array is:', arr

slice_one = arr[:4]
print 'slice begins at 0 and ends at 4 is:', slice_one

slice_two = arr[7:10]
print 'slice begins at 7 and ends at 10 is:', slice_two

slice_three = arr[0:12:4]
print 'slice begins at 0 and ends at 12 with step 4 is:', slice_three
array is: [ 0  1  2  3  4  5  6  7  8  9 10 11]
slice begins at 0 and ends at 4 is: [0 1 2 3]
slice begins at 7 and ends at 10 is: [7 8 9]
slice begins at 0 and ends at 12 with step 4 is: [0 4 8]

# coding: utf-8
import numpy as np

arr = np.arange(12).reshape((3, 4))
print 'array is:'
print arr

# 取第一维的索引 1 到索引 2 之间的元素，也就是第二行
# 取第二维的索引 1 到索引 3 之间的元素，也就是第二列和第三列
slice_one = arr[1:2, 1:3]
print 'first slice is:'
print slice_one

# 取第一维的全部
# 按步长为 2 取第二维的索引 0 到末尾 之间的元素，也就是第一列和第三列
slice_two = arr[:, ::2]
print 'second slice is:'
print slice_two
array is:
[[ 0  1  2  3]
[ 4  5  6  7]
[ 8  9 10 11]]
first slice is:
[[5 6]]
second slice is:
[[ 0  2]
[ 4  6]
[ 8 10]]

import numpy as np

arr = np.arange(12).reshape((3, 4)).tolist()

slice_two = [
row[::2] for row in arr
]
print slice_two
[[0, 2], [4, 6], [8, 10]]

# coding: utf-8
import numpy as np

arr = np.arange(24).reshape((2, 3, 4))

print arr[1, ...]               # 等价于 arr[1, :, :]
print arr[..., 1]               # 等价于 arr[:, :, 1]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]
[[ 1  5  9]
[13 17 21]]

## 索引(indexing) 操作

### 最简单的情况

# coding: utf-8
import numpy as np

arr = np.array([
[1, 2, 3, 4],
[2, 4, 6, 8],
[3, 6, 9, 12],
[4, 8, 12, 16]
])
print '第二行第二列的值:', arr[1, 1]

# coding: utf-8
arr = [
[1, 2, 3, 4],
[2, 4, 6, 8],
[3, 6, 9, 12],
[4, 8, 12, 16]
]
print '第二行第二列的值:', arr[1][1]
try:
print '第二行第二列的值(尝试用 Numpy 的方式获取):', arr[1, 1]
except Exception as e:
print str(e)

### 获取多个元素

1. 用逗号分隔的数组序列

• 序列的长度和多维数组的维数要一致
• 序列中每个数组的长度要一致
import numpy as np

arr = np.array([
[1, 2, 3, 4],
[2, 4, 6, 8],
[3, 6, 9, 12],
[4, 8, 12, 16]
])

print arr[[0, 2], [3, 1]]

[4 6]

以上面这个例子来说，其含义是: 选择第一行和第三行，然后对第一行选择第四列，对第三行选择第二列。

这个不太好翻译，所以就用原来的英语表达。

所谓 boolean index，就是用一个由 boolean 类型值组成的数组来选择元素的方法。比如说对下面这样多维数组

array([[1, 2, 3, 4],
[2, 4, 6, 8],
[3, 6, 9, 12],
[4, 8, 12, 16]])

如果要取其中 值大于 5 的元素，就可以用上 boolean index 了，如下所示:

import numpy as np

arr = np.array([[1, 2, 3, 4],
[2, 4, 6, 8],
[3, 6, 9, 12],
[4, 8, 12, 16]])

[[False False False False]
[False False  True  True]
[False  True  True  True]
[False  True  True  True]]
[ 6  8  6  9 12  8 12 16]

除了比较运算能产生 boolean mask 数组以外， Numpy 本身也提供了一些工具方法:

• numpy.iscomplex
• numpy.isreal
• numpy.isfinite
• numpy.isinf
• numpy.isnan

## 切片和索引的同异

1. 切片得到的是原多维数组的一个 视图(view) ，修改切片中的内容会导致原多维数组的内容也发生变化
2. 切片得到在多维数组中连续(或按特定步长连续)排列的值，而索引可以得到任意位置的值，自由度更大一些

import numpy as np

arr = np.arange(12).reshape(2, 6)
print 'array is:'
print arr

slc = arr[:, 2:5]
print 'slice is:'
print slc

slc[1, 2] = 10000
print 'modified slice is:'
print slc
print 'array is now:'
print arr
array is:
[[ 0  1  2  3  4  5]
[ 6  7  8  9 10 11]]
slice is:
[[ 2  3  4]
[ 8  9 10]]
modified slice is:
[[    2     3     4]
[    8     9 10000]]
array is now:
[[    0     1     2     3     4     5]
[    6     7     8     9 10000    11]]