Numpy 笔记(二): 多维数组的切片(slicing)和索引(indexing)

转载 2017年06月12日 11:21:25

切片(slicing)操作

Numpy 中多维数组的切片操作与 Python 中 list 的切片操作一样,同样由 start, stop, step 三个部分组成

import numpy as np

arr = np.arange(12)
print 'array is:', arr

slice_one = arr[:4]
print 'slice begins at 0 and ends at 4 is:', slice_one

slice_two = arr[7:10]
print 'slice begins at 7 and ends at 10 is:', slice_two

slice_three = arr[0:12:4]
print 'slice begins at 0 and ends at 12 with step 4 is:', slice_three
array is: [ 0  1  2  3  4  5  6  7  8  9 10 11]
slice begins at 0 and ends at 4 is: [0 1 2 3]
slice begins at 7 and ends at 10 is: [7 8 9]
slice begins at 0 and ends at 12 with step 4 is: [0 4 8]

上述例子是一维数组的例子,如果是多维数组,将不同维度上的切片操作用 逗号 分开就好了

# coding: utf-8
import numpy as np

arr = np.arange(12).reshape((3, 4))
print 'array is:'
print arr

# 取第一维的索引 1 到索引 2 之间的元素,也就是第二行
# 取第二维的索引 1 到索引 3 之间的元素,也就是第二列和第三列
slice_one = arr[1:2, 1:3]
print 'first slice is:'
print slice_one

# 取第一维的全部
# 按步长为 2 取第二维的索引 0 到末尾 之间的元素,也就是第一列和第三列
slice_two = arr[:, ::2]
print 'second slice is:'
print slice_two
array is:
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
first slice is:
[[5 6]]
second slice is:
[[ 0  2]
 [ 4  6]
 [ 8 10]]

对于 slice_two,如果 arr 是用 Python 的 list 表示的,那么要得到相同的结果得像下面这样,相对来说就麻烦多了:

import numpy as np

arr = np.arange(12).reshape((3, 4)).tolist()

slice_two = [
    row[::2] for row in arr
]
print slice_two
[[0, 2], [4, 6], [8, 10]]

对于维数超过 3 的多维数组,还可以通过 '…' 来简化操作

# coding: utf-8
import numpy as np

arr = np.arange(24).reshape((2, 3, 4))

print arr[1, ...]               # 等价于 arr[1, :, :]
print arr[..., 1]               # 等价于 arr[:, :, 1]
[[12 13 14 15]
 [16 17 18 19]
 [20 21 22 23]]
[[ 1  5  9]
 [13 17 21]]

索引(indexing) 操作

最简单的情况

对于一个多维数组来说,最简单的情况就是访问其中一个特定位置的元素了,如下所示:

# coding: utf-8
import numpy as np

arr = np.array([
    [1, 2, 3, 4],
    [2, 4, 6, 8],
    [3, 6, 9, 12],
    [4, 8, 12, 16]
])
print '第二行第二列的值:', arr[1, 1]
第二行第二列的值: 4

相比之下,如果用 Python 的 list 来表示上述二维数组,获取同一个位置的元素的方法为:

# coding: utf-8
arr = [
    [1, 2, 3, 4],
    [2, 4, 6, 8],
    [3, 6, 9, 12],
    [4, 8, 12, 16]
]
print '第二行第二列的值:', arr[1][1]
try:
    print '第二行第二列的值(尝试用 Numpy 的方式获取):', arr[1, 1]
except Exception as e:
    print str(e)
第二行第二列的值: 4
第二行第二列的值(尝试用 Numpy 的方式获取): list indices must be integers, not tuple

如果只是二维数组,这种差别可能看起来并不大,但想象一下假如有一个 10 维的数组,用 Python 的标准做法需要写 10 对中括号,而用 Numpy 依然只需要一对。

获取多个元素

事实上,在 Numpy 的索引操作方式 `x = arr[obj]` 中, obj 不仅仅可以是一个用逗号分隔开的数字序列,还可以是更复杂的内容。

  1. 用逗号分隔的数组序列

    • 序列的长度和多维数组的维数要一致
    • 序列中每个数组的长度要一致
    import numpy as np
    
    arr = np.array([
        [1, 2, 3, 4],
        [2, 4, 6, 8],
        [3, 6, 9, 12],
        [4, 8, 12, 16]
    ])
    
    print arr[[0, 2], [3, 1]]
    
    [4 6]
    

    以上面这个例子来说,其含义是: 选择第一行和第三行,然后对第一行选择第四列,对第三行选择第二列。

  2. boolean/mask index

    这个不太好翻译,所以就用原来的英语表达。

    所谓 boolean index,就是用一个由 boolean 类型值组成的数组来选择元素的方法。比如说对下面这样多维数组

    array([[1, 2, 3, 4],
           [2, 4, 6, 8],
           [3, 6, 9, 12],
           [4, 8, 12, 16]])
    

    如果要取其中 值大于 5 的元素,就可以用上 boolean index 了,如下所示:

    import numpy as np
    
    arr = np.array([[1, 2, 3, 4],
                    [2, 4, 6, 8],
                    [3, 6, 9, 12],
                    [4, 8, 12, 16]])
    mask = arr > 5
    
    print 'boolean mask is:'
    print mask
    
    print arr[mask]
    
    boolean mask is:
    [[False False False False]
     [False False  True  True]
     [False  True  True  True]
     [False  True  True  True]]
    [ 6  8  6  9 12  8 12 16]
    

    除了比较运算能产生 boolean mask 数组以外, Numpy 本身也提供了一些工具方法:

    • numpy.iscomplex
    • numpy.isreal
    • numpy.isfinite
    • numpy.isinf
    • numpy.isnan

切片和索引的同异

切片和索引都是访问多维数组中元素的方法,这是两者的共同点,不同之处有:

  1. 切片得到的是原多维数组的一个 视图(view) ,修改切片中的内容会导致原多维数组的内容也发生变化
  2. 切片得到在多维数组中连续(或按特定步长连续)排列的值,而索引可以得到任意位置的值,自由度更大一些

不考虑第一点的话,切片的操作是可以用索引操作来实现的,不过这没有必要就是了。

对于第一点,见下面的实验:

import numpy as np

arr = np.arange(12).reshape(2, 6)
print 'array is:'
print arr

slc = arr[:, 2:5]
print 'slice is:'
print slc

slc[1, 2] = 10000
print 'modified slice is:'
print slc
print 'array is now:'
print arr
array is:
[[ 0  1  2  3  4  5]
 [ 6  7  8  9 10 11]]
slice is:
[[ 2  3  4]
 [ 8  9 10]]
modified slice is:
[[    2     3     4]
 [    8     9 10000]]
array is now:
[[    0     1     2     3     4     5]
 [    6     7     8     9 10000    11]]

深入浅出Numpy

随着人工智能的复兴,越来越多AI的架构采用Python语言来开发,因此学会Numpy处理数据,就成为当下最急需的技能。人工智能其实就是数据处理方式,因此需要学习怎么样表示数据、以及数据处理方式,Numpy库就是人工智能里的基础,比如在TensorFlow应用非常广泛。
  • 2017年09月27日 08:38

numpy数组切片与索引

转自:http://cs231n.github.io/python-numpy-tutorial/#python-containers 一、 如何切片和索引: import numpy as ...
  • qq_18433441
  • qq_18433441
  • 2017-02-19 16:52:30
  • 7375

Numpy的fancy indexing简介

fancy indexing概念上很简单:即指传递索引数组以便一次得到多个数组元素。使用fancy indexing时要特别注意的一点是返回数组的shape反映的是索引数组的shape而不是被索引的原...
  • Blateyang
  • Blateyang
  • 2017-12-12 17:00:46
  • 229

在python&numpy中切片(slice)

对于一维数组来说,python原生的list和numpy的array的切片操作都是相同的。无非是记住一个规则arr_name[start: end: step],就可以了。 实例: 下面是几个...
  • qq_34327480
  • qq_34327480
  • 2017-12-22 10:19:15
  • 184

Numpy基础笔记

Numpy(Numerical Python的简称)是高性能科学计算和数据分析的基础包。其部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组。 用于对整组数据...
  • hickai
  • hickai
  • 2014-04-11 11:17:09
  • 54065

Python创建二维数组和切片操作

在推荐系统的数据构造时,经常要使用二维数组,通常先创建元素均为0的数组,这要使用Numpy模块中的zeros()函数 1.创建一个元素为0的二维数组: from numpy import * b=ze...
  • u010412858
  • u010412858
  • 2017-03-01 20:14:02
  • 2497

Python之numpy教程(二):运算、索引、切片

1.numpy数组的特点在于,大小相等的数组之间,任何算数运算都会将运算应用到元素级。 请看下面的例子: arr = np.array([[1.,2.,3.],[4.,5.,6.]]) arr输出: ...
  • liangzuojiayi
  • liangzuojiayi
  • 2016-05-30 11:01:55
  • 25227

Python高级特性-切片(Slice)

切片(Slice)如何在一个数组中取特定的一组数据? 是一个个指定?>>> L = range(10) >>> L [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> L[0] 0...
  • eocee
  • eocee
  • 2015-05-19 17:36:43
  • 9211

python 多维切片

多维切片???——>numpy??——>cython??——>nose?——>easy_install
  • yageeart
  • yageeart
  • 2014-08-12 18:36:57
  • 5092

python多维数组切片

1、数组a第0个元素(二维数组)下的所有子元素(一维数组)的第一列 import numpy as np b=np.arange(24) a=b.reshape(2,3,4) print a prin...
  • hutao1101175783
  • hutao1101175783
  • 2017-08-11 10:20:42
  • 3244
收藏助手
不良信息举报
您举报文章:Numpy 笔记(二): 多维数组的切片(slicing)和索引(indexing)
举报原因:
原因补充:

(最多只允许输入30个字)