1.编写UDF类
import org.apache.hadoop.hive.ql.exec.UDF;
public class NewIP2Long extends UDF {
public static long ip2long(String ip) {
String[] ips = ip.split("[.]");
long ipNum = 0;
if (ips == null) {
return 0;
}
for (int i = 0; i < ips.length; i++) {
ipNum = ipNum << Byte.SIZE | Long.parseLong(ips[i]);
}
return ipNum;
}
public long evaluate(String ip) {
if (ip.matches("\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}")) {
try {
long ipNum = ip2long(ip);
return ipNum;
} catch (Exception e) {
return 0;
}
} else {
return 0;
}
}
public static void main(String[] argvs) {
NewIP2Long ipl = new NewIP2Long();
System.out.println(ip2long("112.64.106.238"));
System.out.println(ipl.evaluate("58.35.186.62"));
}
}
2.编译,然后打包成ip2long.jar。
3.在需要使用ip2long这个方法到时候:
1 | add jar /tmp/NEWIP2Long.jar; |
2 | drop temporary function ip2long; |
3 | create temporary function ip2long as 'NewIP2Long' ; |
4 | select ip2long(ip) from XXX ; |
这种方法每次使用都要add,create一下,还是很麻烦,如果能把UDF编译到hive源码中那一定是件很high的事。
进阶:将自定义UDF编译到hive中
重编译hive:
1)将写好的Jave文件拷贝到~/install/hive-0.8.1/src/ql/src/java/org/apache/hadoop/hive/ql/udf/
1 | cd ~/install/hive- 0.8 . 1 /src/ql/src/java/org/apache/hadoop/hive/ql/udf/ |
2)修改~/install/hive-0.8.1/src/ql/src/java/org/apache/hadoop/hive/ql/exec/FunctionRegistry.java,增加import和RegisterUDF
1 | import com.meilishuo.hive.udf.UDFIp2Long; |
3 | registerUDF( "ip2long" , UDFIp2Long. class , false ); |
3)在~/install/hive-0.8.1/src下运行ant -Dhadoop.version=1.0.1 package
1 | cd ~/install/hive- 0.8 . 1 /src |
2 | ant -Dhadoop.version= 1.0 . 1 package |
4)替换exec的jar包,新生成的包在/hive-0.8.1/src/build/ql目录下,替换链接
1 | cp hive-exec- 0.8 . 1 .jar /hadoop/hive/lib/hive-exec- 0.8 . 1 .jar. 0628 |
3 | ln -s hive-exec- 0.8 . 1 .jar. 0628 hive-exec- 0.8 . 1 .jar |
5)重启hive服务
6)测试