377. Combination Sum IV

Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

Example:

nums = [1, 2, 3]
target = 4

The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)

Note that different sequences are counted as different combinations.

Therefore the output is 7.

Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?

思路:

提示是动态规划,所以观察给的实例,想要求得dp[4]的所有可能,其实就是求dp[4-1]+dp[4-2]+dp[4-3],注意当target-nums[j]为0的时候,只有一种情况。

public class Solution {
    public int combinationSum4(int[] nums, int target) {
		if (nums == null || nums.length == 0 || target < 1)
			return 0;
		int[] dp = new int[target + 1];
		for (int i = 1; i < dp.length; i++) {
			dp[i] = 0;
			for (int j = 0; j < nums.length; j++) {
				int k = i - nums[j];
				if (k < 0)
					continue;
				if (k == 0)
					dp[i] += 1;
				dp[i] += dp[k];
			}
		}
		return dp[target];        
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值