Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3] target = 4 The possible combination ways are: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.
Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?
提示是动态规划,所以观察给的实例,想要求得dp[4]的所有可能,其实就是求dp[4-1]+dp[4-2]+dp[4-3],注意当target-nums[j]为0的时候,只有一种情况。
public class Solution {
public int combinationSum4(int[] nums, int target) {
if (nums == null || nums.length == 0 || target < 1)
return 0;
int[] dp = new int[target + 1];
for (int i = 1; i < dp.length; i++) {
dp[i] = 0;
for (int j = 0; j < nums.length; j++) {
int k = i - nums[j];
if (k < 0)
continue;
if (k == 0)
dp[i] += 1;
dp[i] += dp[k];
}
}
return dp[target];
}
}