关于二战群里早早提出的一道我尝试了7种途径未有结果的反常积分(利用等比来展开,代换)

题干为:

答案为:

这道题我尝试
1.直接按分部积分来做,试图找到一种关系,但是尝试失败。
2泰勒展开,但是是按x=0展开的,结果带导数的部分全是0,无法解题。
3.令x=tan t也没做出来
4.令x=sin(Pi/n)t也没做出来
5.倒代换,失败
6.变换成比数列(但是积分的范围是不变的)
7.令t=x^n来展开,失败,根本不可能化到与sin(x/n)的展开同形。
看看大家有什么好方法!万谢!
----------------------------------------------------------------------------
这道题目,小恩字给提供了2个思路,
第一个思路是说,证明An是个收敛级数;
第二个如下,只是还没有验证。是这样的:
总体思路是把x^n看做等比数列中的那个q来代换,下面我来演示一下答题做法:

这样分区间,就是为了把x放在(0,1)中,再根据等比q在(0,1)内,有:
则令q=-x^n,a1=1来做第一个定积分,当然会产生一个不可能手动积出来的积分,(这个会和右部第二个积分产生的一个不能积出来的积分抵消掉的,当前分析等式右部第一个定积分。)再来看第二个积分:
此时,令t=1/x,则积分区间发生变化,由1~+oo变为1~0,调整下也是0~1此时按照解决右部第一个积分的方法处理当前这个积分,可得出一个不能手动积出来的积分,可以右部第一个积分产生的那个抵消掉。
感谢小恩字的帮助!
----------------------------------------------------
下面是格桑梅朵给的回复:
你看看你的题目有问题没,n次方的情况没算出来,但是2n次方的情况就简单多了:
非常感谢小郑!!!
------------------------------------------------------
感谢大家不遗余力的支持和肯定!
这道题到此为止,不再讨论。不再考研要求范围内,限于时间和精力,笔者不再对此题更新。


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值