HDU 6683 Rikka with Geometric Sequence(杜教筛,非常规数论分块)

题目
题意:求 1 , 2 , 3 , 4... n 1,2,3,4...n 1,2,3,4...n中有多少个子序列是等比数列, n &lt; = 5 e 17 n&lt;=5e17 n<=5e17

题解:
首先长度为1,2的等比数列我们可以直接算出答案。
对于长度>3的等比数列,
设公比 q = a b q = \frac ab q=ba,那么最后一项被 a l e n g t h − 1 a^{length-1} alength1整除。
a &lt; = n 3 a&lt;=\sqrt[3]{n} a<=3n 可以直接暴力枚举,对于每个最后一项,不同的 &lt; a &lt;a <a g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1 b b b都可以贡献出一种等比数列,有 φ ( a ) \varphi(a) φ(a)种方案,那么答案就是 ∑ a = 2 n ∑ k = 4 φ ( a ) ⌊ n a k − 1 ⌋ \sum_{a=2}^n\sum_{k=4} \varphi(a)\lfloor \frac n{a^{k-1}} \rfloor a=2nk=4φ(a)ak1n

对于长度=3的等比数列。
数量为 ∑ a = 2 n φ ( a ) ⌊ n a 2 ⌋ \sum_{a=2}^n \varphi(a)\lfloor \frac n{a^{2}} \rfloor a=2nφ(a)a2n
对于 ⌊ n a 2 ⌋ \lfloor \frac n{a^{2}} \rfloor a2n可以数论分块,这个时候可以证明 的取值最多只有 n 3 \sqrt[3]n 3n 种:当 a &lt; = n 3 a&lt;=\sqrt[3]n a<=3n 的时候,只有 n 3 \sqrt[3]n 3n 种值,当 a &gt; n 3 a&gt;\sqrt[3]n a>3n 的时候,这个商小于等于 n 3 \sqrt[3]n 3n ,因此最多也就只有 n 3 \sqrt[3]n 3n 种答案。

对于 φ ( a ) \varphi(a) φ(a)需要求前缀和,那么杜教筛就好了,注意预处理的范围要尽量大,因为这个复杂度很玄,需要常数技巧的支撑。

A C   C o d e : \rm{AC\ Code:} AC Code:

#include<bits/stdc++.h>
#define LL long long 
#define maxn 50000005
#define mod 998244353
using namespace std;

int pr[maxn],cnt_pr,phi[maxn],sp[maxn];
bool vis[maxn];

map<LL,int>mp;

int cnt = 0;
int Phi(LL n){
	if(n < maxn) return sp[n];
	if(mp.count(n)) return mp[n];
	int &ret = mp[n] = (n % mod) * (n % mod + 1) / 2 % mod;
	for(LL i=2,nxt;i<=n;i=nxt+1){
		nxt = n/(n/i);
		ret = (ret - (nxt - i + 1ll) % mod * Phi(n/i)) % mod;
	}
	return ret;
}

int main(){
	phi[1] = sp[1] = 1;
	for(int i=2;i<maxn;i++){
		if(!vis[i]) pr[cnt_pr++] = i , phi[i] = i-1;
		for(int j=0;pr[j]*i<maxn;j++){
			vis[i * pr[j]] = 1;
			if(i % pr[j] == 0){
				phi[i * pr[j]] = phi[i] * pr[j];
				break;
			}
			phi[i * pr[j]] = phi[i] * (pr[j] - 1);
		}
		sp[i] = (sp[i-1] + phi[i]) % mod;
	}
	
	int T;
	for(scanf("%d",&T);T--;){
		LL n;scanf("%lld",&n);
		int ans = (n % mod + (n % mod) * (n % mod - 1) / 2) % mod;
		
		for(LL i=2,nxt;i*i<=n;i=nxt+1){
			nxt = floor(sqrt(n/(n/(i*i))));
			ans = (ans + 1ll * (Phi(nxt) - Phi(i-1)) * (n/(i*i)%mod)) % mod;
		}
		
		int lim = floor(pow(n,1.0/3));
		for(int i=2;i<=lim;i++)
			for(LL x=1ll*i*i*i;;x*=i){
				ans = (ans + phi[i] * 1ll * (n / x % mod)) % mod;
				if(x > n / i) break;
			}
		
		printf("%d\n",(ans+mod)%mod);
	}
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值