吴恩达-深度学习
文章平均质量分 93
未来影子
曾先后在百度、理想、快手参与研发工作
后端、大数据、NLP学习者
展开
-
序列模型 - 机器翻译
参考资料:https://blog.csdn.net/u013733326/article/details/97619187。原创 2022-08-25 18:02:15 · 323 阅读 · 0 评论 -
序列模型 - 词向量的运算与Emoji生成器
接下来我们来看看在关于有特定性别词组中,如何将它们进行均衡,比如“男演员”与“女演员”中,与“保姆”一词更接近的是“女演员”,我们可以消去“保姆”的性别偏差,但是这并不能保证“保姆”一词与“男演员”与“女演员”之间的距离相等,我们要学的均衡算法将解决这个问题。因为词嵌入的原因,“adore”与“love”很相似,所以它可以正确表达出“❤️”,但是在“you are not happy”中却表达了“❤️”,其原因是我们这个算法使用均值,忽略了排序,所以不善于理解“not happy”这一类词汇。原创 2022-08-22 18:10:28 · 558 阅读 · 0 评论 -
序列模型 - 搭建循环神经网络及其应用
根据图4实现一个LSTM单元的前向传播。参数:xt -- 在时间步“t”输入的数据,维度为(n_x, m)a_prev -- 上一个时间步“t-1”的隐藏状态,维度为(n_a, m)c_prev -- 上一个时间步“t-1”的记忆状态,维度为(n_a, m)parameters -- 字典类型的变量,包含了:Wf -- 遗忘门的权值,维度为(n_a, n_a + n_x)bf -- 遗忘门的偏置,维度为(n_a, 1)Wi -- 更新门的权值,维度为(n_a, n_a + n_x)原创 2022-08-21 22:07:35 · 350 阅读 · 0 评论 -
卷积神经网络 - 车辆识别
回想一下我们在试着分类80个类别,使用5个锚框。我们收集了两个文件“coco_classes.txt”和“yolo_anchors.txt”中关于80个类和5个锚框的信息。我们将这些数据加载到模型中。原创 2022-08-20 15:41:00 · 2418 阅读 · 1 评论 -
ValueError: bad marshal data (unknown type code)
问题描述:ValueError: bad marshal data (unknown type code)问题解决:重新生成h5文件。原创 2022-08-20 15:40:11 · 1873 阅读 · 0 评论 -
卷积神经网络 - Keras入门与残差网络的搭建
至此,笑脸识别任务算是完成了!!原创 2022-08-19 21:11:52 · 1331 阅读 · 0 评论 -
卷积神经网络 - 搭建卷积神经网络模型
在现在的深度学习框架中,你只需要实现前向传播,框架负责向后传播,所以大多数深度学习工程师不需要费心处理后向传播的细节,卷积网络的后向传递是有点复杂的。在前向传播的过程中,我们将使用多种过滤器对输入的数据进行卷积操作,每个过滤器会产生一个2D的矩阵,我们可以把它们堆叠起来,于是这些2D的卷积矩阵就变成了高维的矩阵。接下来,我们从最大值池化层开始实现池化层的反向传播。想一下我们的正向传播首先是经过卷积层,然后滑动地取卷积层最大值构成了池化层,如果我们不记录最大值的位置,那么我们怎样才能反向传播到卷积层呢?...原创 2022-08-18 22:20:45 · 1936 阅读 · 0 评论 -
改善深层神经网络 - TensorFlow入门
参照资料:https://blog.csdn.net/weixin_47440593/article/details/107721334?到目前为止,我们一直在使用numpy来自己编写神经网络。在本章中我们将一步步使用深度学习框架来构建属于自己的神经网络。原创 2022-08-16 20:47:21 · 272 阅读 · 0 评论 -
改善深层神经网 - 优化算法实战
参照资料说明:https://blog.csdn.net/u013733326/article/details/79907419到目前为止,我们始终都是在使用梯度下降法学习,本文中,我们将使用一些更加高级的优化算法,利用这些优化算法,通常可以提高我们算法的收敛速度,并在最终得到更好的分离结果。这些方法可以加快学习速度,甚至可以为成本函数提供更好的值,在相同的结果下,有一个好的优化算法可以是等待几天和等待几小时之间的差异。...原创 2022-08-15 16:41:22 · 101 阅读 · 0 评论 -
改善深层神经网络 - 初始化、正则化、梯度校验
在这篇文章中,我们讲要做以下三件事:初始化参数使用0来初始化参数使用随机数来初始化参数使用抑梯度异常初始化参数(参见吴恩达-深度学习中的梯度消失、梯度爆炸)正则化模型:梯度校验:我们将要建立一个分类器把蓝点和红点分开在这之前我们已经实现过一个3层的神经网络,我们将对其初始化,以下是三种是我们即将尝试的方法:让我们来看看我们的模型是怎样的:2 - Zero initialization我们发现W、b全部被初始化为0了,那么我们使用这些参数来训练模型,结果会如何?从上图我们可以看到,学习原创 2022-08-14 15:42:03 · 245 阅读 · 0 评论 -
神经网络和深度学习 - 一步步搭建多层神经网络以及应用
调用上面两个函数来实现它,为了再实现L层神经网络时更加方便,我们需要一个函数来复制前一个函数(带有RELU的linear_activation_forward)L-1次,然后用一个带有SIGMOID的linear_activation_forward来跟踪它。注意:对于每个前向函数,都有一个相应的后向函数,这就是为什么再我们的转发模块的每一步都会再cache中存储一些值,cache的值对计算梯度很有用,再反向传播模块中,我们将使用cache来计算梯度,现在我们正式开始分别构建两层神经网络和多层神经网络。..原创 2022-08-13 20:55:47 · 675 阅读 · 0 评论 -
神经网络和深度学习 - 带有一个隐藏层的平面数据分类
在构建之前,先定义三个变量n_x:输入层数量n_h:隐藏层数量(这里设置为4)n_y:输出层数量参数:X - 输入数据集,维度为(输入的数量,训练/测试的数量)Y - 标签,维度为(输出的数量,训练/测试数量)返回:n_x - 输入层的数量n_h - 隐藏层的数量n_y - 输出层的数量。......原创 2022-08-12 17:28:06 · 431 阅读 · 0 评论 -
神经网络和深度学习 - 神经网络思维的Logistic回归
参照:https://blog.csdn.net/u013733326/article/details/79639509介绍:搭建一个能够“识别猫”的简易神经网络在开始之前,我们需要引入如下的库。原创 2022-08-11 15:30:43 · 128 阅读 · 0 评论