科研
文章平均质量分 95
未来影子
曾先后在百度、理想、快手参与研发工作
后端、大数据、NLP学习者
展开
-
biaffine model:Named Entity Recognition as Dependency Parsing
动机:NER研究关注于flat NER,而忽略了nested NER方法:在本文中,使用基于图的依存关系解析中的思想,以通过biaffine model为模型提供全局的输入视图。biaffine model 对句子中的开始标记和结束标记进行评分,使用该标记来探索所有跨度,以便该模型能够准确地预测命名实体工作介绍:在这项工作中,我们将NER重新确定为开始和结束索引的任务,并为这些定义的范围分配类别,我们的系统在多层Bi-LSTM之上使用biaffine模型,将分数分配给句子中所有可能的跨度。原创 2022-11-24 14:37:09 · 1225 阅读 · 0 评论 -
Nested Named Entity Recognition from Medical Texts: An Adaptive Shared Network Architecture with Att
嵌套命名实体任务的解决,提出了一个新的框架:Adaptive Shared Network Architecture with Attentive CRF(ASAC)采用自适应共享(AS)机制自适应地选择预训练模型每一层的输出来编码输入文本,从而获得不同实体类别的不同特征,通过这种机制,可以从预训练语言模型不同层里去学习上下文特征,用于下游任务在解码阶段利用注意力条件随机场,它使其他实体识别任务的维特比解码输出作为查询。通过注意力机制将查询作为残差输入到原始CRF进行偏差校正。原创 2022-11-21 16:09:11 · 878 阅读 · 0 评论 -
KaFSP: Knowledge-Aware Fuzzy Semantic Parsing for Conversational Question Answering over a Large-Sca
在本文中,研究了在大规模知识库问答上的会话的两个问题- 语法中定义的行为不足以解决现实场景中的不确定推理- 知识基础信息未能充分利用,也没有被纳入语义解析中为了解决上述两个问题,我们提出了一个knowledge-aware fuzzy semantic parsing framework (KaFSP)。它定义了模糊比较操作在基于不确定推理的语法系统中,这部分涉及了模糊集理论。原创 2022-10-18 16:20:44 · 351 阅读 · 0 评论 -
ChineseBERT Chinese Pretraining Enhanced by Glyph and Pinyin Information
最近预训练的模型关于中文的忽视了两个重要因素:字形和拼音。它们在语言理解上携带了重要的语法和语义信息。在本文的工作中,我们提出了ChineseBERT,结合汉字的字形和拼音信息。- 字形嵌入是基于不同字体,能够从视觉特征捕获字符语义- 拼音嵌入字符对汉字的发音进行了处理,处理了汉语中常见的同字异义现象(不同发音代表不同含义)原创 2022-10-06 18:11:12 · 1516 阅读 · 0 评论 -
复杂网络——多元时间序列转化网络
已经学习了一段时间有关复杂网络方面的资料。接下来想记录下自己一些心得体会。OK,let’go!谈到复杂网络,首先不得避免谈到汪小凡的著作《2006_复杂网络理论及其应用 - 汪小帆》,这时一篇入门的为数不多的中文著作。这里也给附上资源:OK,来简单讲述下自己最近所浏览的一篇论文《constructing ordinal partition transition networks from multivariate time series》中译为《从多元时间序列构造有序划分转换网络》中英文PDF版资源原创 2021-01-29 17:36:36 · 4337 阅读 · 2 评论 -
Characterizing stochastic time series with ordinal networks
最近新读了一篇文章《Characterizing stochastic time series with ordinal networks》中译为《用序数网络表征随机时间序列》,将这篇文章涉及到的知识点做个梳理,对其中涉及到的程序图大部分做了实现(一)时间序列转网络的方法给定一个时间序列{xt},t=1...N\{x_t\},t=1...N{xt},t=1...N,及其序列的长度为N,我们构造一个n=N-d+1的重叠分区(其中d为嵌入尺寸),xt→wtx_t\rightarrow w_txt→wt原创 2021-04-13 14:45:45 · 527 阅读 · 0 评论