第八次作业

某个人进入如下一个棋盘中,要求从左上角开始走,
    最后从右下角出来(要求只能前进,不能后退),
    问题:共有多少种走法?
    
    0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0

import math

def uniquePaths(m, n):
    # 计算组合数 C(m+n-2, m-1)
    result = math.factorial(m+n-2) // (math.factorial(m-1) * math.factorial(n-1))
    return result

m = 5  # 棋盘的行数
n = 8  # 棋盘的列数
paths = uniquePaths(m, n)
print("共有 %d 种走法" % paths)

输入一行符号,以#结束,判断其中的对称符号是否匹配。对称符号包括:
    { } 、 [ ] 、 ( )、 < >

    如果对称符号能够实现中间对称,则输出yes
    否则输出no

给定一个包含n+1个整数的数组nums,其数字在1到n之间(包含1和n),
    可知至少存在一个重复的整数,假设只有一个重复的整数,
    请找出这个重复的数
 

a = [1,2,3,4,5,6,7,8,9,10,5]
for j in range(1,len(a)-1):
    if a.count(j) == 2:
        print(j)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值