拉格朗日插值
Mys_C_K
人生有许多道:曾经踏足的是道,即将踏往的也是道,那什么才是道呢?唯有脚下走的才是道。一切精神或者物质都归于虚无,然后从混沌中衍生出三万道。在悲喜间涉足一条无数前人经历过,且将有无数后人奔赴的道,无论是否已经或者将要到达彼岸,然后便不再回头或是左顾右盼,即使有些道繁盛至极,夜灯如昼,无数人一浪又一浪的涌去,造就了世人皆知的辉煌;即使有些道草木凋敝,荒草丛生,只等勇敢的开拓者斩开荆棘,创造一片天地;这些都无所关,无所在意,彼岸何如、来日何方甚至过往旧事都化作一缕云烟,飘渺碧霄,我自撷高山之月色,独随足落处往行。
展开
-
bzoj 3601 一个人的数论 - 莫比乌斯反演 - 拉格朗日插值 - 高斯消元
题目大意:定义fk(n)=∑1≤i≤n,(i,n)=1ik,求fk(∏wi=1paii)fk(n)=∑1≤i≤n,(i,n)=1ik,求fk(∏i=1wpiai)f_k(n)=\sum_{1\le i\le n,(i,n)=1}i^k,求f_k(\prod_{i=1}^wp_i^{a_i}),其中k≤1e2, w≤1e3k≤1e2, w≤1e3k\le1e2,\ w\le1e3...原创 2018-04-24 22:00:30 · 384 阅读 · 0 评论 -
青春野狼不做理性小魔女的梦 - 莫比乌斯反演 - 拉格朗日插值 - 杜教筛
题目大意:给定{Ak}\{A_k\}{Ak}(有些位置是-1表示一会要由你决定)。对每个m∈[1,n]m\in[1,n]m∈[1,n],求有多少方案(将−1-1−1变为[0,m)[0,m)[0,m)之间的整数)使得∑i=1kAixi=1( mod  m)\sum_{i=1}^kA_ix_i=1(\bmod\ m...原创 2018-12-25 18:06:12 · 382 阅读 · 0 评论 -
整数拆分 - dp - 拉格朗日插值
神仙题题目大意:定义fm(n)f_m(n)fm(n)为可重集合S的个数,其中S满足S的元素都是m的非负整数次幂,并且S的元素和是n。定义gm1(n)=fm(n),gmk(n)=∑i=0ngmk−1(n)fm(n),k≥2g_m^1(n)=f_m(n),g_m^k(n)=\sum_{i=0}^ng_m^{k-1}(n)f_m(n),k\geq2gm1(n)=fm(n),gmk(n)=∑...原创 2018-11-28 10:02:13 · 390 阅读 · 0 评论 -
好的序列 - 莫比乌斯反演 - 杜教筛 - 拉格朗日插值
题目大意:令fk(n)f_k(n)fk(n)表示长度为kkk的序列,每个元素在[1,n][1,n][1,n],并且gcd\gcdgcd为111的数量。求:∑i=1nfk(i), n≤109,k≤105\sum_{i=1}^n f_k(i),\ \ \ n\le10^9,k\le10^5∑i=1nfk(i), n≤109,...原创 2018-10-21 15:56:37 · 220 阅读 · 0 评论 -
五颜六色的幻想乡 - 矩阵树定理 - 拉格朗日插值
题目大意:给一张图,便有三种颜色,对于每一种可能的a+b+c=n-1的(a,b,c)问恰好a条红色边b条黄色c条蓝色边的方案数,n<=50,5s。 题解:朴素做法,红色视为x黄色视作y蓝色视作1跑矩阵树,直接做是O(n6)O(n6)O(n^6),代入x插值算y的多项式可以变成O(n5)O(n5)O(n^5),或者更直接的直接将状态压起来,即令y=xny=xny=x^n,然后再代x插值即可。...原创 2018-09-15 14:54:16 · 358 阅读 · 0 评论 -
K transpositions - dp - 拉格朗日插值
题目大意:对于长度为n的a[i]=i的数列,每次可以选择两个数字交换,问交换不超过k次之后会得到多少不同的排列。首先考虑一个朴素dp,即dp[i][j]表示序列长度是i交换次数是j的答案,那么显然要么i不参与交换,即前n-1个元素自己玩;或者n最后在p位置,然后相当与前n-1个位置自己玩,但是n凑合了一次交换次数。 因此转移有:dp[i][j]=dp[i−1][j]+(i−1)dp[i−1]...原创 2018-08-02 15:25:20 · 235 阅读 · 0 评论 -
bzoj2655 calc - dp - 拉格朗日插值
首先令F(i, j)表示选了i个数字,最大的数字不超过j的方案数,转移显然,即F(i,j)=F(i,j−1)+i∗j∗F(i−1,j−1)F(i,j)=F(i,j−1)+i∗j∗F(i−1,j−1)F(i, j)=F(i,j-1)+i*j*F(i-1,j-1)。后面那个乘以j就是把这个数字插进去。 考虑把F(i, j)看作是一个函数fi(j)fi(j)f_i(j),也就是fn(x)fn(x)f_...原创 2018-08-02 15:17:30 · 252 阅读 · 0 评论 -
[JLOI 2016] bzoj 4559 成绩比较 - 计数 - 容斥 - 拉格朗日插值
计数至少有k名学生被碾压 发现此时除了那一堆组合数,答案是每一门课程满足其人排名是r的方案数的乘积。 考虑这个怎么算,设f_i(x)表示第i门课程其人分数是x且排名是r_i的方案数,显然是一个n-1次多项式。要对这个求前缀和,变成了一个n次多项式。发现该多项式不算组合数的部分与k无关可以预处理。#include<iostream>#include<cstring>...原创 2018-07-29 16:41:57 · 204 阅读 · 0 评论 -
2018年一轮省队集训Day2 - 多项式 - 拉格朗日插值 - 容斥原理
T1题目大意给N*M的网格图染色,问有多少种方案,使得任意一个h*w的矩阵中,黑色格子数量恒等。N,M≤109,h,w≤4N,M≤109,h,w≤4N,M\le10^9,h,w\le4题解举例来说如果h=w=4,只要满足: a[x][y]+a[x+4][y+4]=a[x+4][y]+a[x][y+4]a[x][y]+a[x+4][y+4]=a[x+4][y]+a[x][y+4...原创 2018-06-10 21:46:39 · 591 阅读 · 1 评论 -
chess 一个多项式插值维护dp的好题
题目大意:给你一个n*m的棋盘,你需要把一些格子染成黑色,使得有恰好k个黑色联通块,对998244353取模,n≤3,k,m≤5e4n≤3,k,m≤5e4n\le3,k, m\le5e4。题解:考虑dp,dp[i][j][S]表示第i列,第i列的黑格子集合是S并且有j个联通块(注意当n=3的时候第一、三行同是黑格子的时候有是否联通两种情况),这样|S|&lt;=9(事实上有几种状态相同可以去掉...原创 2018-04-27 17:31:24 · 306 阅读 · 0 评论 -
[2018 集训队互测 Day 5]LOJ 2504 小 H 爱染色 - 拉格朗日插值 - NTT
题解:通过列式子发现答案是关于n-m的3m+1次多项式,为了求出F(0)~F(3m+1),可以发现这玩意可以NTT出来。#include<bits/stdc++.h>#define rep(i,a,b) for(int i=a;i<=b;i++)#define Rep(i,v) rep(i,0,(int)v.size()-1)#define lint long long...原创 2019-03-13 16:07:18 · 825 阅读 · 0 评论