斯特林数
Mys_C_K
人生有许多道:曾经踏足的是道,即将踏往的也是道,那什么才是道呢?唯有脚下走的才是道。一切精神或者物质都归于虚无,然后从混沌中衍生出三万道。在悲喜间涉足一条无数前人经历过,且将有无数后人奔赴的道,无论是否已经或者将要到达彼岸,然后便不再回头或是左顾右盼,即使有些道繁盛至极,夜灯如昼,无数人一浪又一浪的涌去,造就了世人皆知的辉煌;即使有些道草木凋敝,荒草丛生,只等勇敢的开拓者斩开荆棘,创造一片天地;这些都无所关,无所在意,彼岸何如、来日何方甚至过往旧事都化作一缕云烟,飘渺碧霄,我自撷高山之月色,独随足落处往行。
展开
-
2018年一轮省队集训Day2 - 多项式 - 拉格朗日插值 - 容斥原理
T1题目大意给N*M的网格图染色,问有多少种方案,使得任意一个h*w的矩阵中,黑色格子数量恒等。N,M≤109,h,w≤4N,M≤109,h,w≤4N,M\le10^9,h,w\le4题解举例来说如果h=w=4,只要满足: a[x][y]+a[x+4][y+4]=a[x+4][y]+a[x][y+4]a[x][y]+a[x+4][y+4]=a[x+4][y]+a[x][y+4...原创 2018-06-10 21:46:39 · 591 阅读 · 1 评论 -
HDU4372 Count the Buildings - 计数
首先考虑n这个数字把序列划分成了两端。 把每个数字及其遮住的东西看作一个集合。 发现这就是个第一类斯特林数,然后在组合数分配一下即可。#include<iostream>#include<cstring>#include<cstdio>#include<algorithm>#define mod 1000000007#defin...原创 2018-07-29 09:15:03 · 217 阅读 · 0 评论 -
Topcoder SRM686 CyclesNumber - 斯特林数 - 计数
两种思考方式,一种是直接推式子,一种是考虑用斯特林数展开考虑组合意义。#include<iostream>#include<cstring>#include<cstdio>#include<algorithm>#define mod 1000000007#define lint long long#define N 100010#d...原创 2018-08-05 09:01:17 · 305 阅读 · 0 评论 -
小学生数学题 - 用第一类斯特林数解决自然数幂求和这个标签真长
题目和标签都是假的。 题目大意:给定p,&amp;amp;amp;amp;amp;amp;nbsp;k,&amp;amp;amp;amp;amp;amp;nbsp;np,&amp;amp;amp;amp;amp;amp;nbsp;k,&amp;amp;amp;amp;amp;amp;nbsp;np,\ k,\ n,求: (∑ni=11i)mod&amp;amp;amp;amp;amp;amp;nbsp;&am原创 2018-08-05 17:35:41 · 350 阅读 · 0 评论 -
crash的游戏 - 组合数学 - 斯特林数
题目大意:求:∑i=0m(mi)(n+m−2ik)\sum_{i=0}^m\binom mi\binom {n+m-2i}{k}i=0∑m(im)(kn+m−2i)m≤109,k≤300,m+k≤n≤109m\le10^9,k\le300,m+k\le n\le10^9m≤109,k≤300,m+k≤n≤109。500组数据。题解:直接暴做。首先注意到(xk)\binom x k(...原创 2018-09-28 13:54:19 · 375 阅读 · 0 评论 -
青春野狼不做小恶魔学妹的梦 - 斯特林数 - 多项式理论
题目大意:对所nnn个点的连通图G\mathrm{G}G求边数的kkk次方和。n≤5×104,k≤15n\le5\times10^4,k\le15n≤5×104,k≤15题解:显然考虑斯特林数:mk=∑i=0kS(k,i)i!(mi)m^k=\sum_{i=0}^kS(k,i)i!\binom mimk=∑i=0kS(k,i)i!(im),因此统计nnn个点的图并选定其中恰好iii条不...原创 2018-12-26 12:45:29 · 2262 阅读 · 1 评论