[学习笔记]多项式多点求值与多点插值 - 多项式理论 - 学习笔记

下文及代码中所有提及某个函数是以n为界或者是n次的,意思是其最高次项次数 n − 1 n-1 n1
关于求逆,由牛顿迭代: F = G − 1 F n + 1 = 2 F n − F n 2 G F=G^{-1}\\F_{n+1}=2F_n-F_n^2G F=G1Fn+1=2FnFn2G
关于多项式取模,A(x)以n为界,B(x)以m为界,需要求C(x)和D(x),使得C(x)的界是n-m+1,D(x)的界是m-1:
A ( x ) = B ( x ) C ( x ) + D ( x ) x n − 1 A ( 1 x ) = ( x m − 1 B ( 1 x ) ) ( x n − m C ( 1 x ) ) + x n − 1 D ( 1 x ) A(x)=B(x)C(x)+D(x)\\x^{n-1}A\left(\frac 1x\right)=\left(x^{m-1}B\left(\frac 1x\right)\right)\left(x^{n-m}C\left(\frac1x\right)\right)+x^{n-1}D\left(\frac 1x\right) A(x)=B(x)C(x)+D(x)xn1A(x1)=(xm1B(x1))(xnmC(x1))+xn1D(x1)
注意到 x n − 1 D ( 1 x )   m o d   x n − m + 1 = 0 x^{n-1}D\left(\frac 1x\right)\bmod {x^{n-m+1}}=0 xn1D(x1)modxnm+1=0,因此(设 A T n ( x ) A^{T_n}(x) ATn(x)表示将 A ( x ) A(x) A(x) n n n为界翻转):
A T n ( x ) = B T m ( x ) C T n − m + 1 ( x ) ( m o d x n − m + 1 ) C T n − m + 1 ( x ) = A T n ( x ) ( B T m ( x ) ) − 1 A^{T_{n}}(x)=B^{T_{m}}(x)C^{T_{n-m+1}}(x)\pmod {x^{n-m+1}}\\ C^{T_{n-m+1}}(x)=A^{T_{n}}(x)\left(B^{T_{m}}(x)\right)^{-1} ATn(x)=BTm(x)CTnm+1(x)(modxnm+1)CTnm+1(x)=ATn(x)(BTm(x))1
因此可以求出 C C C,再通过一次乘法求出D即可。

多项式多点求值:
现在有一个以 n n n为界的多项式 A ( x ) A(x) A(x),以及 m m m个位置 x 1 , … , x m x_1,\dots,x_m x1,,xm,求 A ( x 1 ) , … , A ( x m ) A(x_1),\dots,A(x_m) A(x1),

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值