自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 资源 (1)
  • 收藏
  • 关注

原创 论文解读:SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization(Bi)

Part1 Introduction以前的大多数工作都集中在二元 DDI 预测上,而多类型 DDI 药理作用预测更有意义但任务更艰巨SumGNN: knowledge summarization graph neural network:提出了一种新方法SumGNN,可以有效地使用KG 来帮助预测药物相互作用Part2 MethodsProblem Settings:(1)Drug Interaction Graph:????_???????????? = {(u,r,v)|u∈ D,r∈?

2021-06-08 16:41:01 1156

原创 论文解读:K-BERT:Enabling Language Representation with Knowledge Graph(AAAI-20)

Part1 IntroductionBERT这种公共模型,对于通用领域表现优秀,但是垂直领域表现不佳,除非在垂直领域进行训练,但是非常耗时耗力。将知识图谱整合到语言表示中,领域知识将能提升垂直领域的任务,并且模型具有更好的可解释性。论文提出的K-BERT通过引进知识图谱(将知识库中的结构化信息(三元组)融入到预训练模型)中,可以更好地解决领域相关任务。Part2 Methods模型主要包括四个子模块:Knowledge layer、Embedding layer、Seeing layer和Mask

2021-05-09 20:57:57 861

原创 论文解读:KGNN: Knowledge Graph Neural Network for Drug-Drug Interaction Prediction

一、背景药物间的相互作用(DDI)是指同时或先后服用两种或两种以上药物时,药物之间所产生的相互作用,而该相互作用可能会导致意想不到的副作用。总结归纳现有DDI预测方法,大致可分为两大类。一类是分子表示,主要聚焦于药物分子的特征学习。这类方法都基于同样的假设:即具有相似嵌入表示的药物分子将会表现出相似的DDI。另一类常用的DDI预测方法是基于网络嵌入的方法,通过构建各种与药物有关的生物网络,在这个网络中,将药物看作网络中的节点,通过学习节点的嵌入表示来预测潜在的边,即DDI的关系。构建映射关系网络也有多

2021-04-01 11:14:36 3198 1

原创 解决maven报错JAVA_HOME should point to a JDK not a JRE

在mavem目录bin目录下找到mvn.cmd文件使用记事本打开在文件第一行输入set JAVA_HOME=D:\eclipse\jdk(此处为你的Jdk所在位置)

2020-10-15 20:08:38 364

原创 protege利用Cellfie导入数据

在进行本体建模的过程中需要批量导入数据到protege,其内置模块Cellfie可以帮助我们实现这一过程,期间需要用到Transformation Rules,其语法规则需要遵循MappingMaster DSL。在对Cellfie官方文档链接:https://github.com/protegeproject/mapping-master/wiki/MappingMasterDSLMappingMaster使用领域特定语言(DSL)定义从电子表格内容到OWL本体的映射。该语言基于曼彻斯特OWL语法,改语

2020-08-16 11:23:35 6028 11

原创 吴恩达机器学习第八周学习笔记及编程作业答案

一、理论基础聚类1、无监督学习在非监督学习中,我们需要将一系列无标签的训练数据,输入到一个算法中,然后我们告诉这个算法,快去为我们找找这个数据的内在结构给定数据。我们可能需要某种算法帮助我们寻找一种结构。2、K-均值算法K-均值是最普及的聚类算法,算法接受一个未标记的数据集,然后将数据聚类成不同的组。K-均值是一个迭代算法,假设我们想要将数据聚类成 n 个组,其方法为:首先选择????个随机的点,称为聚类中心(cluster centroids);对于数据集中的每一个数据,按照距离????个中

2020-06-11 21:48:17 2177

原创 吴恩达机器学习第七周学习笔记及编程作业答案

支持向量机(SVM,Support Vector Machine)一、理论基础1.优化目标解释:可以去掉常数项1/m,因为它并不影响我们最小化θ的取值与逻辑回归不同的是,支持向量机不会输出概率,当最小化代价函数,获得参数????时,支持向量机所做的是它来直接预测????的值等于 1,还是等于 0。2.大边界的直观理解支持向量机有时被称为大间距分类器考察这样一个数据集,其中有正样本,也有负样本,可以看到这个数据集是线性可分的。存在一条直线把正负样本分开。当然有多条不同的直线,可以把正样本和负

2020-06-06 14:15:58 805

原创 吴恩达机器学习第六周学习笔记及编程作业答案

一、理论基础1. 评估一个假设为了检验算法是否过拟合,我们将数据分成训练集和测试集,通常用 70%的数据作为训练集,用剩下 30%的数据作为测试集(训练集和测试集均要含有各种类型的数据,所以要对数据进行“洗牌”,然后再分成训练集和测试集)。2. 模型选择和交叉验证集使用交叉验证集来择一个更能适应一般情况的模型,即:使用 60%的数据作为训练集,使用 20%的数据作为交叉验证集,使用 20%...

2020-04-28 17:42:10 1344

原创 吴恩达机器学习第五周学习笔记及编程作业答案

神经网络的学习一、理论基础1. 代价函数假设神经网络的训练样本有????个,每个包含一组输入????和一组输出信号????,????表示神经网络层数,????????表示每层的 neuron 个数(????????表示输出层神经元个数),????????代表最后一层中处理单元的个数。将神经网络的分类定义为两种情况:二类分类和多类分类regularized logistic regression cost function:在神经网络中,我...

2020-04-23 20:37:01 1316

原创 protege5.5中如何添加SWRL

swrl规则如何创建???对于4.1前的版本:下载swrltab对于4以后的protege暂时还没有对相应的swrltab插件,可以这样做:windows→views→ontology views→rules

2020-04-23 12:26:42 2823 3

原创 吴恩达机器学习第四周学习笔记及编程作业答案

##吴恩达机器学习第四周学习笔记及编程作业答案一、理论基础1. 神经网络非线性假设当特征太多时,计算的负荷会非常大,这时可以使用非线性的多项式项,能够帮助我们建立更好的分类模型。1.1 模型表示第一层成为输入层(Input Layer),最后一层称为输出层(Output Layer),中间一层成为隐藏层(Hidden Layers)。我们为每一层都增加一个偏差单位(bias unit...

2020-04-10 21:55:37 1100

原创 吴恩达机器学习第三周学习笔记及编程作业答案

吴恩达机器学习第三周学习笔记及编程作业答案一、理论基础逻辑回归(Logistic Regression)1. 分类问题我们将因变量(dependent variable)可能属于的两个类分别称为负向类和正向类,其中 0 表示负向类,1 表示正向类逻辑回归算法的性质是:它的输出值永远在 0 到 1 之间,逻辑回归算法实际上是一种分类算法。2. 假说表示逻辑回归模型的假设是:其中...

2020-04-09 22:59:50 1514

原创 吴恩达机器学习第二周学习笔记及编程作业答案

吴恩达机器学习第二周学习笔记及编程作业答案一、理论基础1、机器学习定义:一个程序被认为能从经验 E 中学习,解决任务 T,达到性能度量值P,当且仅当,有了经验 E 后,经过 P 评判,程序在处理 T 时的性能有所提升机器学习都可以分为两大类:监督学习;无监督学习。监督学习:在监督学习中,我们会得到一个数据集,并且已经知道我们的正确输出应该是什么样子的,因为我们认为输入和输出之间是有关系的。...

2020-04-09 18:09:17 1091

机器学习编程作业.docx

精心整理的吴恩达机器学习笔记,编程作业答案及解析,代码都是运行过的,希望能够对广大机器学习爱好者有所帮助,持续更新中····

2020-04-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除