hdu 2053Switch Game基础题

Switch Game

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 15988    Accepted Submission(s): 9772


Problem Description
There are many lamps in a line. All of them are off at first. A series of operations are carried out on these lamps. On the i-th operation, the lamps whose numbers are the multiple of i change the condition ( on to off and off to on ).
 

Input
Each test case contains only a number n ( 0< n<= 10^5) in a line.
 

Output
Output the condition of the n-th lamp after infinity operations ( 0 - off, 1 - on ).
 

Sample Input
  
  
1 5
 

Sample Output
1
0

虽然是一道水题,但是还是学到了一个东西,叫做唯一分解定理,即一个数n的约数,可以分解为多个质数的乘积。
然后放到这题来考虑,这题就是判断n的约数的个数,如果个数为奇数,则为1,反之为偶数,则为0;
OK,现在我们来考虑如何求n的约数的个数,可以想到,任意一个数的分解,它的约数总是成对出现的。比如50=1*50=2*25=5*10=....
然后我们考虑完全平方数,比如36=1*36=3*12=6*6...
可以看出,完全平方数的约数的个数一定为奇数。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<stack>
#include<queue>
#include<algorithm>
#include<string>
#include<cstring>
#include<cmath>
#include<vector>
#include<map>
#include<set>
#define eps 1e-8
#define zero(x) (((x>0?(x):-(x))-eps)
#define mem(a,b) memset(a,b,sizeof(a))
#define memmax(a) memset(a,0x3f,sizeof(a))
#define pfn printf("\n")
#define ll __int64
#define ull unsigned long long
#define sf(a) scanf("%d",&a)
#define sf64(a) scanf("%I64d",&a)
#define sf264(a,b) scanf("%I64d%I64d",&a,&b)
#define sf364(a,b,c) scanf("%I64d%I64d%I64d",&a,&b,&c)
#define sf2(a,b) scanf("%d%d",&a,&b)
#define sf3(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define sf4(a,b,c,d) scanf("%d%d%d%d",&a,&b,&c,&d)
#define sff(a) scanf("%f",&a)
#define sfs(a) scanf("%s",a)
#define sfs2(a,b) scanf("%s%s",a,b)
#define sfs3(a,b,c) scanf("%s%s%s",a,b,c)
#define sfd(a) scanf("%lf",&a)
#define sfd2(a,b) scanf("%lf%lf",&a,&b)
#define sfd3(a,b,c) scanf("%lf%lf%lf",&a,&b,&c)
#define sfd4(a,b,c,d) scanf("%lf%lf%lf%lf",&a,&b,&c,&d)
#define sfc(a) scanf("%c",&a)
#define ull unsigned long long
#define debug printf("***\n")
const double PI = acos(-1.0);
const double e = exp(1.0);
const int INF = 0x7fffffff;;
template<class T> T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template<class T> T lcm(T a, T b) { return a / gcd(a, b) * b; }
template<class T> inline T Min(T a, T b) { return a < b ? a : b; }
template<class T> inline T Max(T a, T b) { return a > b ? a : b; }
bool cmpbig(int a, int b){ return a>b; }
bool cmpsmall(int a, int b){ return a<b; }
using namespace std;
int main()
{
   // freopen("data.in","r",stdin);
    int n;
    while(~sf(n))
    {
        int num=sqrt((double)n);
        //printf("%d\n",num);
        if(num*num==n)
            printf("1\n");
        else
            printf("0\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值