神经网络中的参数

一 可学习的参数

  • 输入层(input):
    读取图片,将图片用数字化的矩阵来表示。没有参数需要学习

  • 卷积(convolution)
    选用卷积核(filter,可以是多个)对图片的多个通道进行卷积操作(element-wise的相乘)。卷积计算会使图片的长宽变小,但是"高度"变大(如图中的图片逐渐变"厚"),这是因为使用的卷积核(filter)较多,使得计算得到的图片通道数(channels)也会增加。卷积层引入了"卷积核/filter",假设卷积核大小为,图片有l个通道(channels)/维度,而选用的"卷积核/filter"有k个,再加上bias,可以学习的参数有:(n*m*l+1)*k个。

  • 激活(activation)
    该操作主要是对之前的卷积计算结果做非线性处理,对得到的矩阵进行了一个变换,没有引进参数。一般的激活层没有参数,但如果激活函数是PReLU则不同了——它需要学习一个x < 0时的权值,方法也是上一层负的输出与对应的当前层误差的积之和。

  • 池化(pooling)
    对非线性化后的高维矩阵进行"减采样",同样以一定步长逐步将矩阵中的"元素块(例如:)"仅使用一个数来代表,比如:取"元素块"中的最大值、平均值等计算方式。没有引进参数。

  • 拉平(Flatten)
    将高维矩阵"拉平",转换为一维矩阵,元素依次排序。对输入矩阵进行reshape,不引进参数。

  • 全连接(Fully Connected):
    设置下一层神经元的个数,并使用仿射变换得到下一层神经元的值,因为两层之间的神经元会全部连接起来,所及叫做全连接。对前后神经元做了仿射变换,引进的参数有权重和偏置,假设n个神经元连接m个神经元,则引入的参数有(n+1)*m

  • 输出层计算分类概率(Softmax)
    对最后一层的神经元进行概率输出计算,即:给出各分类标签的概率,比如这里预期"Car"的概率一定要大于其他分类标签的概率值,所以最后一层的神经元个数和分类的标签个数需要一致。和全连接层没什么区别,只是输出的神经元个数要求是分类的标签个数,所以引入的变量也是,这里m是分类的标签个数。

  • Batch-Normalization
    这一层其实在每一次卷积、全连接后都可以进行计算,BN层引入的参数则和输入层神经元个数相关,假设输入神经元个数为n,则该层引进的参数为2n。BN层有一个scale和一个shift参数,也可以看作是权值和偏置量。

二 不可学习的参数(超参数)

 学习率、batch size、weight decay、模型的深度宽度分辨率等。



作者:MunCN
链接:https://www.jianshu.com/p/aa856451f916
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值