dp……
令b[i][j]表示n=i,k=j时的答案;
则b[1][0]=1;b[2][0]=1;b[2][1]=1;b[3][0]=1;b[3][1]=2;b[3][2]=2;b[3][3]=1;
我们观察发现(至少我是观察)b[i][j]=b[i-1][j-i+1]+……b[i-1][j];
注意j-i+1<0时令其为0;j>(i-1)*(i-2)/2,即j大于i-1层逆序对最大值时,b[i][j]=b[i-1][j-i+1]+……b[i-1][n];
发现有联系区间和则
令a[i][j]表示n=i时,k=1到j所有答案的和
首先发现a[i][0]都为1;
最终a[i][j]=a[i][j-1]+a[i-1][j]-a[i-1][j-i];注意到之前提到的问题就好答案就是a[n][k]-a[n][k-1];
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
int n,k;
int a[1005][1005];
int main()
{
int i,j,l;
scanf("%d%d",&n,&k);
a[1][0]=1;
a[2][0]=1;a[2][1]=2;
a[3][0]=1;a[3][3]=6;
a[3][1]=3;a[3][2]=5;
for(i=4;i<=n;i++){
a[i][0]=a[i-1][0];
for(j=1;j<=min(k,i*(i-1)/2);j++){
if(j>(i-1)*(i-2)/2)a[i][j]=(a[i][j-1]+a[i-1][(i-1)*(i-2)/2]-a[i-1][j-i])%10000;
else{
if(j-i>=0)a[i][j]=(a[i][j-1]+a[i-1][j]-a[i-1][j-i])%10000;
else a[i][j]=(a[i][j-1]+a[i-1][j])%10000;
}
}
}
printf("%d",(a[n][k]-a[n][k-1]+10000)%10000);
return 0;
}