bzoj2431: [HAOI2009]逆序对数列

4 篇文章 0 订阅

dp……

令b[i][j]表示n=i,k=j时的答案;

则b[1][0]=1;b[2][0]=1;b[2][1]=1;b[3][0]=1;b[3][1]=2;b[3][2]=2;b[3][3]=1;

我们观察发现(至少我是观察)b[i][j]=b[i-1][j-i+1]+……b[i-1][j];

注意j-i+1<0时令其为0;j>(i-1)*(i-2)/2,即j大于i-1层逆序对最大值时,b[i][j]=b[i-1][j-i+1]+……b[i-1][n];

发现有联系区间和则

令a[i][j]表示n=i时,k=1到j所有答案的和

首先发现a[i][0]都为1;

最终a[i][j]=a[i][j-1]+a[i-1][j]-a[i-1][j-i];注意到之前提到的问题就好

答案就是a[n][k]-a[n][k-1];

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
int n,k;
int a[1005][1005];
int main()
{
    int i,j,l;
    scanf("%d%d",&n,&k);
    a[1][0]=1;
    a[2][0]=1;a[2][1]=2;
    a[3][0]=1;a[3][3]=6;
    a[3][1]=3;a[3][2]=5;
    for(i=4;i<=n;i++){
        a[i][0]=a[i-1][0];
        for(j=1;j<=min(k,i*(i-1)/2);j++){
            if(j>(i-1)*(i-2)/2)a[i][j]=(a[i][j-1]+a[i-1][(i-1)*(i-2)/2]-a[i-1][j-i])%10000;
            else{
                 if(j-i>=0)a[i][j]=(a[i][j-1]+a[i-1][j]-a[i-1][j-i])%10000;
                 else a[i][j]=(a[i][j-1]+a[i-1][j])%10000;
                 }
            }
        }
     printf("%d",(a[n][k]-a[n][k-1]+10000)%10000); 
     return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值