算法与数据结构学习(37)-树结构(线索化二叉树)

先看一个问题

将数列 {1, 3, 6, 8, 10, 14 } 构建成一颗二叉树. n+1=7
在这里插入图片描述
问题分析:
当我们对上面的二叉树进行中序遍历时,数列为 {8, 3, 10, 1, 14,6 }
但是 6, 8, 10, 14 这几个节点的 左右指针,并没有完全的利用上.
如果我们希望充分的利用 各个节点的左右指针, 让各个节点可以指向自己的前后节点,怎么办?
解决方案-线索二叉树

线索二叉树基本介绍

1.n个结点的二叉链表中含有n+1 【公式 2n-(n-1)=n+1】 个空指针域。利用二叉链表中的空指针域,存放指向该结点在某种遍历次序下的前驱和后继结点的指针(这种附加的指针称为"线索")

2.这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree),根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种

3.一个结点的前一个结点,称为前驱结点
4.一个结点的后一个结点,称为后继结点

代码实现

线索二叉树应用案例
应用案例说明:将下面的二叉树,进行中序线索二叉树。中序遍历的数列为 {8, 3, 10, 1, 14, 6}
在这里插入图片描述

说明: 当线索化二叉树后,Node节点的 属性 left 和 right ,有如下情况:
1.left 指向的是左子树,也可能是指向的前驱节点. 比如 ① 节点 left 指向的左子树, 而 ⑩ 节点的 left 指向的就是前驱节点.
在这里插入图片描述
2.right指向的是右子树,也可能是指向后继节点,比如 ① 节点right 指向的是右子树,而⑩ 节点的right 指向的是后继节点.

实现代码

package treeThreadeBinaryTree;

public class ThreadeBinaryTreeDemo {

	public static void main(String[] args) {
		
		//测试中序线索化二叉树
		
		HeroNode root = new HeroNode(1, "tom");
		HeroNode node2 = new HeroNode(3, "jack");
		HeroNode node3 = new HeroNode(6, "smith");
		HeroNode node4 = new HeroNode(8, "mary");
		HeroNode node5 = new HeroNode(10, "king");
		HeroNode node6 = new HeroNode(14, "dim");
		
		//二叉树后面我们要递归创建,现在手动创建
		root.setLeft(node2);
		root.setRight(node3);
		node2.setLeft(node4);
		node2.setRight(node5);
		node3.setLeft(node6);
		
		
		//测试线索化
		ThreadeBinarTree threadeBinarTree = new ThreadeBinarTree();
		threadeBinarTree.setRoot(root);
		threadeBinarTree.threadeNodes();
		
		//测试,以10号测试
		HeroNode leftNode1=node5.getLeft();
		HeroNode rightNode1=node5.getRight();
		System.out.println("10号结点的前驱结点为="+leftNode1);
		System.out.println("10号结点的后继结点为="+rightNode1);
		

	}

}

//定义ThreadeBinarTree实现了线索化功能的二叉树
class ThreadeBinarTree{
	private HeroNode root;
	
	//为了实现线索化,需要创建一个当前结点的前驱结点的指针
	//在递归进行线索化的时候,pre总是保留前一个结点
	private HeroNode pre = null;
	
	public void setRoot(HeroNode root) {
		this.root = root;
		
	}
	
	
	//重载线索化的方法
	public void threadeNodes() {
		this.threadeNodes(root);
	}
	
	//编写对二叉树中序线索化的方法
	/**
	 * 
	 * @param node	需要线索化的结点
	 */
	public void threadeNodes(HeroNode node) {
		//如果node == null不能线索化
		if(node == null) {
			return ;
		}
		
		//(一),先线索化左子树
		threadeNodes(node.getLeft());
		//(二)线索化当前结点
		
		//处理当前结点的前驱结点
		if(node.getLeft() == null) {
			//让当前结点的左指针指向前驱结点
			node.setLeft(pre);
			//修改当前结点的左指针类型
			node.setLeftType(1);
		}
		
		//处理后继结点
		if(pre !=null && pre.getRight() == null) {
			//让前驱结点的右指针指向当前结点
			pre.setRight(node);
			pre.setRightType(1);
		}
		
		//!!!!!!重要:每次处理一个结点后,让当前结点指向下一个结点的前驱结点
		pre = node;
		//(三)线索化右子树
		threadeNodes(node.getRight());
	}
	//删除结点
	public void delNode(int no) {
		if(this.root != null) {
			//如果只有一个root,立即判断root是不是就要删除的结点
			if(root.getNo() == no) {
				root = null;
			}else {
				//递归删除
				root.delNode(no);
			}
		}else {
			System.out.println("空树无法删除");
		}
	}
	
	//前序遍历
	public void preOrder() {
		if(this.root != null) {
			this.root.preOrder();
		}else {
			System.out.println("二叉树为空,无法遍历");
		}
	}
	
	//中序遍历
	public void infixOrder() {
		if(this.root != null) {
			this.root.infixOrder();
		}else {
			System.out.println("二叉树为空,无法遍历");
		}
	}
	
	//后序遍历
	public void postOrder() {
		if(this.root != null) {
			this.root.postOrder();
		}else {
			System.out.println("二叉树为空,无法遍历");
		}
	}
	
	//调用前序遍历查找
	public HeroNode preOrdersearch(int no) {
		if(root != null) {
			return root.preOrdersearch(no);
		}else {
			return null;
		}
	}
	
	//调用中序遍历查找
	public HeroNode infixOrdersearch(int no) {
		if(root != null) {
			return root.infixOrdersearch(no);
		}else {
			return null;
		}
	}
	
	//调用后序遍历查找
		public HeroNode postOrdersearch(int no) {
			if(root != null) {
				return root.postOrdersearch(no);
			}else {
				return null;
			}
		}
}


//创建HeroNode
//先创建HeroNode结点
class HeroNode {
	private int no;
	private String name;
	private HeroNode left;// 默认null
	private HeroNode right;// 默认null
	
	//定义两个属性
	//规定:
	//1.如果leftType==0,表示指向左子树,如果为1表示指向前驱结点
	//2.如果rightType==0,表示指向右子树,如果为1表示指向后继结点
	private int leftType;
	private int rightType;
	
	

	public int getLeftType() {
		return leftType;
	}

	public void setLeftType(int leftType) {
		this.leftType = leftType;
	}

	public int getRightType() {
		return rightType;
	}

	public void setRightType(int rightType) {
		this.rightType = rightType;
	}

	public HeroNode(int no, String name) {
		super();
		this.no = no;
		this.name = name;
	}

	public int getNo() {
		return no;
	}

	public void setNo(int no) {
		this.no = no;
	}

	public String getName() {
		return name;
	}

	public void setName(String name) {
		this.name = name;
	}

	public HeroNode getLeft() {
		return left;
	}

	public void setLeft(HeroNode left) {
		this.left = left;
	}

	public HeroNode getRight() {
		return right;
	}

	public void setRight(HeroNode right) {
		this.right = right;
	}

	@Override
	public String toString() {
		return "HeroNode [no=" + no + ", name=" + name + "]";
	}

	// 递归删除结点
	// 规定
	// 1.如果删除的节点是叶子节点,则删除该节点
	// 2.如果删除的节点是非叶子节点,则删除该子树
	public void delNode(int no) {
		/**
		 * 思路: 1.因为我们的二叉树是单向的,所以我们是判断当前结点的子节点是否是需要删除的结点,而不能判断当前的结点是不是需要删除的结点
		 * 2.如果当前的结点的做子节点不为空,并且左子节点就是要删除的结点,就将this.left = null;并且返回(递归删除结束)
		 * 3.如果当前结点的右子节点不为空,并且右子节点就是要删除的结点,就爱那个this.right = null;并且就返回(结束递归删除)
		 * 4.如果第2步和第3步没有删除结点,那我们就需要向左子树递归删除 5.如果第4不也没有 删除结点,则应当向右子树进行递归删除。
		 */
		// 2.如果当前的结点的做子节点不为空,并且左子节点就是要删除的结点,就将this.left = null;并且返回(递归删除结束)
		if (this.left != null && this.left.no == no) {
			this.left = null;
			return;
		}
		// 3.如果当前结点的右子节点不为空,并且右子节点就是要删除的结点,就爱那个this.right = null;并且就返回(结束递归删除)
		if (this.right != null && this.right.no == no) {
			this.right = null;
			return;
		}
		// 4.如果第2步和第3步没有删除结点,那我们就需要向左子树递归删除
		if (this.left != null) {
			this.left.delNode(no);
		}

		// 5.如果第4不也没有 删除结点,则应当向右子树进行递归删除。
		if (this.right != null) {
			this.right.delNode(no);
		}
	}

	// 编写前序遍历方法
	public void preOrder() {
		System.out.println(this);// 先输出父节点
		// 递归向左子树序遍遍历
		if (this.left != null) {
			this.left.preOrder();
		}
		// 递归向右子树序遍遍历
		if (this.right != null) {
			this.right.preOrder();
		}
	}

	// 中序遍历
	public void infixOrder() {
		// 递归左子树中序遍历
		if (this.left != null) {
			this.left.infixOrder();
		}
		// 输出父节点
		System.out.println(this);
		// 递归向右子树中序遍历
		if (this.right != null) {
			this.right.infixOrder();
		}
	}

	// 后序遍历
	public void postOrder() {
		// 递归左子树后序遍历
		if (this.left != null) {
			this.left.postOrder();
		}
		// 递归向右子树后序遍历
		if (this.right != null) {
			this.right.postOrder();
		}
		// 输出父节点
		System.out.println(this);
	}

	// 前序遍历查找
	/**
	 * 
	 * @param no 要查找的no
	 * @return 如果找到就返回node,如果找不到就返回null
	 */
	public HeroNode preOrdersearch(int no) {
		System.out.println("前序遍历ing");
		// 比较当前结点是不是
		if (this.no == no) {
			return this;
		}

		// 判断当前结点的左节点是否为空,如果不为空,则递归前序查找
		// 如果左递归前序查找找到该结点,则返回
		HeroNode resNode = null;
		if (this.left != null) {
			resNode = this.left.preOrdersearch(no);
		}
		if (resNode != null) {// 说明左子树找到
			return resNode;
		}

		// 1.如果左递归前序查找找到该结点,则返回
		// 2.如果左递归前序查找找到该结点,则返回,
		// 否则继续判断当前节点的右子节点是否为空,如果不为空,则继续向右递归前序查找
		if (this.right != null) {
			resNode = this.right.preOrdersearch(no);
		}
		return resNode;
	}

	// 中序遍历查找
	public HeroNode infixOrdersearch(int no) {

		// 则判断当前结点的左节点是否为空,如果不为空,则递归中序查找
		HeroNode resNode = null;
		if (this.left != null) {
			resNode = this.left.infixOrdersearch(no);
		}
		if (resNode != null) {
			return resNode;
		}
		// 如果找到就返回,如果没有找到就和当前结点作比较,如果相等则返回当前结点,
		System.out.println("中序遍历ing");
		if (this.no == no) {
			return this;
		}

		// 否则继续右递归中序
		if (this.right != null) {
			resNode = this.right.infixOrdersearch(no);
		}

		return resNode;

	}

	// 后序遍历查找
	public HeroNode postOrdersearch(int no) {

		// .判断当前结点的左节点是否为空,如果不为空,则递归后序查找
		HeroNode resNode = null;
		if (this.left != null) {
			resNode = this.left.postOrdersearch(no);
		}
		if (resNode != null) {
			return resNode;
		}

		// 如果左子树没有找到,继续向右子树递归后序查找
		if (this.right != null) {
			resNode = this.right.postOrdersearch(no);
		}
		if (resNode != null) {
			return resNode;
		}

		// 如果左右子树都没有找到,比较当前结点是不是
		System.out.println("后序遍历ing");
		if (this.no == no) {
			return this;
		}
		return resNode;

	}

}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

良缘白马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值