先看一个问题
将数列 {1, 3, 6, 8, 10, 14 } 构建成一颗二叉树. n+1=7
问题分析:
当我们对上面的二叉树进行中序遍历时,数列为 {8, 3, 10, 1, 14,6 }
但是 6, 8, 10, 14 这几个节点的 左右指针,并没有完全的利用上.
如果我们希望充分的利用 各个节点的左右指针, 让各个节点可以指向自己的前后节点,怎么办?
解决方案-线索二叉树
线索二叉树基本介绍
1.n个结点的二叉链表中含有n+1 【公式 2n-(n-1)=n+1】 个空指针域。利用二叉链表中的空指针域,存放指向该结点在某种遍历次序下的前驱和后继结点的指针(这种附加的指针称为"线索")
2.这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree),根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种
3.一个结点的前一个结点,称为前驱结点
4.一个结点的后一个结点,称为后继结点
代码实现
线索二叉树应用案例
应用案例说明:将下面的二叉树,进行中序线索二叉树。中序遍历的数列为 {8, 3, 10, 1, 14, 6}
说明: 当线索化二叉树后,Node节点的 属性 left 和 right ,有如下情况:
1.left 指向的是左子树,也可能是指向的前驱节点. 比如 ① 节点 left 指向的左子树, 而 ⑩ 节点的 left 指向的就是前驱节点.
2.right指向的是右子树,也可能是指向后继节点,比如 ① 节点right 指向的是右子树,而⑩ 节点的right 指向的是后继节点.
实现代码
package treeThreadeBinaryTree;
public class ThreadeBinaryTreeDemo {
public static void main(String[] args) {
//测试中序线索化二叉树
HeroNode root = new HeroNode(1, "tom");
HeroNode node2 = new HeroNode(3, "jack");
HeroNode node3 = new HeroNode(6, "smith");
HeroNode node4 = new HeroNode(8, "mary");
HeroNode node5 = new HeroNode(10, "king");
HeroNode node6 = new HeroNode(14, "dim");
//二叉树后面我们要递归创建,现在手动创建
root.setLeft(node2);
root.setRight(node3);
node2.setLeft(node4);
node2.setRight(node5);
node3.setLeft(node6);
//测试线索化
ThreadeBinarTree threadeBinarTree = new ThreadeBinarTree();
threadeBinarTree.setRoot(root);
threadeBinarTree.threadeNodes();
//测试,以10号测试
HeroNode leftNode1=node5.getLeft();
HeroNode rightNode1=node5.getRight();
System.out.println("10号结点的前驱结点为="+leftNode1);
System.out.println("10号结点的后继结点为="+rightNode1);
}
}
//定义ThreadeBinarTree实现了线索化功能的二叉树
class ThreadeBinarTree{
private HeroNode root;
//为了实现线索化,需要创建一个当前结点的前驱结点的指针
//在递归进行线索化的时候,pre总是保留前一个结点
private HeroNode pre = null;
public void setRoot(HeroNode root) {
this.root = root;
}
//重载线索化的方法
public void threadeNodes() {
this.threadeNodes(root);
}
//编写对二叉树中序线索化的方法
/**
*
* @param node 需要线索化的结点
*/
public void threadeNodes(HeroNode node) {
//如果node == null不能线索化
if(node == null) {
return ;
}
//(一),先线索化左子树
threadeNodes(node.getLeft());
//(二)线索化当前结点
//处理当前结点的前驱结点
if(node.getLeft() == null) {
//让当前结点的左指针指向前驱结点
node.setLeft(pre);
//修改当前结点的左指针类型
node.setLeftType(1);
}
//处理后继结点
if(pre !=null && pre.getRight() == null) {
//让前驱结点的右指针指向当前结点
pre.setRight(node);
pre.setRightType(1);
}
//!!!!!!重要:每次处理一个结点后,让当前结点指向下一个结点的前驱结点
pre = node;
//(三)线索化右子树
threadeNodes(node.getRight());
}
//删除结点
public void delNode(int no) {
if(this.root != null) {
//如果只有一个root,立即判断root是不是就要删除的结点
if(root.getNo() == no) {
root = null;
}else {
//递归删除
root.delNode(no);
}
}else {
System.out.println("空树无法删除");
}
}
//前序遍历
public void preOrder() {
if(this.root != null) {
this.root.preOrder();
}else {
System.out.println("二叉树为空,无法遍历");
}
}
//中序遍历
public void infixOrder() {
if(this.root != null) {
this.root.infixOrder();
}else {
System.out.println("二叉树为空,无法遍历");
}
}
//后序遍历
public void postOrder() {
if(this.root != null) {
this.root.postOrder();
}else {
System.out.println("二叉树为空,无法遍历");
}
}
//调用前序遍历查找
public HeroNode preOrdersearch(int no) {
if(root != null) {
return root.preOrdersearch(no);
}else {
return null;
}
}
//调用中序遍历查找
public HeroNode infixOrdersearch(int no) {
if(root != null) {
return root.infixOrdersearch(no);
}else {
return null;
}
}
//调用后序遍历查找
public HeroNode postOrdersearch(int no) {
if(root != null) {
return root.postOrdersearch(no);
}else {
return null;
}
}
}
//创建HeroNode
//先创建HeroNode结点
class HeroNode {
private int no;
private String name;
private HeroNode left;// 默认null
private HeroNode right;// 默认null
//定义两个属性
//规定:
//1.如果leftType==0,表示指向左子树,如果为1表示指向前驱结点
//2.如果rightType==0,表示指向右子树,如果为1表示指向后继结点
private int leftType;
private int rightType;
public int getLeftType() {
return leftType;
}
public void setLeftType(int leftType) {
this.leftType = leftType;
}
public int getRightType() {
return rightType;
}
public void setRightType(int rightType) {
this.rightType = rightType;
}
public HeroNode(int no, String name) {
super();
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
@Override
public String toString() {
return "HeroNode [no=" + no + ", name=" + name + "]";
}
// 递归删除结点
// 规定
// 1.如果删除的节点是叶子节点,则删除该节点
// 2.如果删除的节点是非叶子节点,则删除该子树
public void delNode(int no) {
/**
* 思路: 1.因为我们的二叉树是单向的,所以我们是判断当前结点的子节点是否是需要删除的结点,而不能判断当前的结点是不是需要删除的结点
* 2.如果当前的结点的做子节点不为空,并且左子节点就是要删除的结点,就将this.left = null;并且返回(递归删除结束)
* 3.如果当前结点的右子节点不为空,并且右子节点就是要删除的结点,就爱那个this.right = null;并且就返回(结束递归删除)
* 4.如果第2步和第3步没有删除结点,那我们就需要向左子树递归删除 5.如果第4不也没有 删除结点,则应当向右子树进行递归删除。
*/
// 2.如果当前的结点的做子节点不为空,并且左子节点就是要删除的结点,就将this.left = null;并且返回(递归删除结束)
if (this.left != null && this.left.no == no) {
this.left = null;
return;
}
// 3.如果当前结点的右子节点不为空,并且右子节点就是要删除的结点,就爱那个this.right = null;并且就返回(结束递归删除)
if (this.right != null && this.right.no == no) {
this.right = null;
return;
}
// 4.如果第2步和第3步没有删除结点,那我们就需要向左子树递归删除
if (this.left != null) {
this.left.delNode(no);
}
// 5.如果第4不也没有 删除结点,则应当向右子树进行递归删除。
if (this.right != null) {
this.right.delNode(no);
}
}
// 编写前序遍历方法
public void preOrder() {
System.out.println(this);// 先输出父节点
// 递归向左子树序遍遍历
if (this.left != null) {
this.left.preOrder();
}
// 递归向右子树序遍遍历
if (this.right != null) {
this.right.preOrder();
}
}
// 中序遍历
public void infixOrder() {
// 递归左子树中序遍历
if (this.left != null) {
this.left.infixOrder();
}
// 输出父节点
System.out.println(this);
// 递归向右子树中序遍历
if (this.right != null) {
this.right.infixOrder();
}
}
// 后序遍历
public void postOrder() {
// 递归左子树后序遍历
if (this.left != null) {
this.left.postOrder();
}
// 递归向右子树后序遍历
if (this.right != null) {
this.right.postOrder();
}
// 输出父节点
System.out.println(this);
}
// 前序遍历查找
/**
*
* @param no 要查找的no
* @return 如果找到就返回node,如果找不到就返回null
*/
public HeroNode preOrdersearch(int no) {
System.out.println("前序遍历ing");
// 比较当前结点是不是
if (this.no == no) {
return this;
}
// 判断当前结点的左节点是否为空,如果不为空,则递归前序查找
// 如果左递归前序查找找到该结点,则返回
HeroNode resNode = null;
if (this.left != null) {
resNode = this.left.preOrdersearch(no);
}
if (resNode != null) {// 说明左子树找到
return resNode;
}
// 1.如果左递归前序查找找到该结点,则返回
// 2.如果左递归前序查找找到该结点,则返回,
// 否则继续判断当前节点的右子节点是否为空,如果不为空,则继续向右递归前序查找
if (this.right != null) {
resNode = this.right.preOrdersearch(no);
}
return resNode;
}
// 中序遍历查找
public HeroNode infixOrdersearch(int no) {
// 则判断当前结点的左节点是否为空,如果不为空,则递归中序查找
HeroNode resNode = null;
if (this.left != null) {
resNode = this.left.infixOrdersearch(no);
}
if (resNode != null) {
return resNode;
}
// 如果找到就返回,如果没有找到就和当前结点作比较,如果相等则返回当前结点,
System.out.println("中序遍历ing");
if (this.no == no) {
return this;
}
// 否则继续右递归中序
if (this.right != null) {
resNode = this.right.infixOrdersearch(no);
}
return resNode;
}
// 后序遍历查找
public HeroNode postOrdersearch(int no) {
// .判断当前结点的左节点是否为空,如果不为空,则递归后序查找
HeroNode resNode = null;
if (this.left != null) {
resNode = this.left.postOrdersearch(no);
}
if (resNode != null) {
return resNode;
}
// 如果左子树没有找到,继续向右子树递归后序查找
if (this.right != null) {
resNode = this.right.postOrdersearch(no);
}
if (resNode != null) {
return resNode;
}
// 如果左右子树都没有找到,比较当前结点是不是
System.out.println("后序遍历ing");
if (this.no == no) {
return this;
}
return resNode;
}
}