为什么要有图?
- 前面我们学了线性表和树
- 线性表局限于一个直接前驱和一个直接后继的关系
- 树也只能有一个直接前驱也就是父节点
- 当我们需要表示多对多的关系时, 这里我们就用到了图
基本介绍
图的举例说明
图是一种数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。 结点也可以称为顶点。如图:
图的常用概念
- 顶点(vertex)
- 边(edge)
- 路径
- 无向图
- 有向图
- 带权图
有向图和带权图
图的表示方式
图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。
邻接矩阵表示图
邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是的row和col表示的是1…n个点
邻接表表示图
- 邻接矩阵需要为每个顶点都分配n个边的空间,其实有很多边都是不存在,会造成空间的一定损失.
- 邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成
说明: - 标号为0的结点的相关联的结点为 1 2 3 4
- 标号为1的结点的相关联结点为0 4,
- 标号为2的结点相关联的结点为 0 4 5
…
图的入门案例
要求: 代码实现如下图结构
思路分析 (1) 存储顶点String 使用 ArrayList (2) 保存矩阵 int[][] edges
代码实现
package graph;
import java.util.ArrayList;
import java.util.Arrays;
public class Graph {
private ArrayList<String> vertexList;//存储点的集合
private int[][] edges;//存储图对应的领结矩阵
private int numOfEdges;//表示边的数目
public static void main(String[] args) {
//测试一把图是否创建
int n = 5;//结点个数
String VertexVal[] = {"A","B","C","D","E",};
//创建图对象
Graph graph = new Graph(n);
//循环添加
for(String value:VertexVal) {
graph.insertVertex(value);
}
//添加边
//A-B,A-C,B-C,B-D,B-D
graph.insertEdge(0,1,1);
graph.insertEdge(0,2,1);
graph.insertEdge(1,2,1);
graph.insertEdge(1,3,1);
graph.insertEdge(1,4,1);
//显示一把邻接矩阵
graph.showGraph();
}
//构造器
public Graph(int n) {
//初始化矩阵和ArrayList
edges = new int [n][n];
vertexList = new ArrayList<String>(n);
numOfEdges = 0;
}
//图中常用的方法
//返回节点的个数
public int getNumOfVertex() {
return vertexList.size();
}
//得到变得数目
public int getNumifEdged() {
return numOfEdges;
}
//显示图对应的矩阵
public void showGraph() {
for(int[] link:edges) {
System.out.println(Arrays.toString(link));
}
}
//返回结点i(下标)对应的值
public String getValueByIndex(int i) {
return vertexList.get(i);
}
//返回v1和v2的权值
public int geWeight(int v1,int v2) {
return edges[v1][v2];
}
//插入节点
public void insertVertex(String vertex) {
vertexList.add(vertex);
}
//添加边
/**
*
* @param v1 表示点的下标即是第几个顶点
* @param v2 表示第二个节点对应的下标
* @param weight 表示是否关联
*/
public void insertEdge(int v1,int v2,int weight) {
//无向图,所以左右都要给
edges[v1][v2] = weight;
edges[v2][v1] = weight;
numOfEdges ++;
}
}