TensorFlow和Keras简介:TensorFlow生态系统

本文概述了TensorFlow生态系统在深度学习中的作用,包括其包含的库如TensorFlow、Keras、TFX和TensorBoard,以及如何在边缘设备、浏览器和生产环境中部署和优化模型。重点介绍了KerasAPI、模型可视化和预训练模型的应用。

概述

深度学习在图像分类和对象检测等任务中的表现优于传统神经网络。TensorFlow 生态系统通过提供开源工具,使构建和部署深度学习模型变得容易,从而在这一增长中发挥了重要作用。TensorFlow 生态系统包括 TensorFlow 和 Keras 等工具,使任何人都可以构建和训练复杂的深度学习模型。我们还将了解 TFX(TensorFlow Extended) 及其用途。

介绍

TensorFlow 生态系统是用于机器学习和人工智能的工具、库和资源的综合集合。它包括从用于构建和训练神经网络的低级库到用于在生产中部署机器学习模型的高级工具的所有内容。TensorFlow 生态系统包括用于构建和训练神经网络的 Keras 库和用于数据预处理的 TensorFlow 数据集等库。许多组织和个人将 TensorFlow 用于各种任务,包括图像和语音识别、自然语言处理等。TensorFlow 的灵活性使其能够在多个平台上运行,并与多种编程语言一起使用。

什么是 TensorFlow 生态系统?

TensorFlow 生态系统包含机器学习项目在其整个生命周期中可能需要的大量工具。借助 TensorFlow 生态系统,您可以构建、训练和部署模型。

 

TFE 包括适用于一切的工具,从数据集到预训练模型,从在强大的 GPU 上运行到使用边缘设备,从在单个系统上训练到在 TPU 云上训练,从生产到部署。

数据集

TensorFlow 生态系统在库 tfds 下拥有大量数据集。只需最少的代码即可轻松访问数据集。数据准备也可以使用这个简单的 API 完成。主要目标是能够在对代码进行最少更改的情况下交换模型中的数据集。您还可以根据需要自定义数据集。也可以添加数据集。

 

自定义构建模型

TensorFlow Keras API 有助于以直观、直接的方式构建 ML 模型。Keras 是一个高级 API,它使模型的构建、训练和部署变得更加容易。它易于扩展和定制。Keras 使训练速度大大加快,因为它预先构建了热启动和训练过程等高级功能。在 Keras 中构建模型有 3 种方法。

  • 顺序 API:它最适合模型按顺序堆叠在一起的体系结构。
  • 函数式 API:它最适合具有多个输入和输出的架构。它可以处理具有非线性拓扑和共享层的模型。
  • 模型子类化:如果架构需要模型中的模型(如子类),则它非常有效。这种递归的模型构建方式是使用模型子类来完成的。

可视化

TensorFlow 生态系统有一个强大的可视化工具,称为 TensorBoard。您可以可视化数据和复杂的图形。使用 TensorBoard,您可以检查每个神经元,并查看权重在训练过程中的更新情况。我们还可以查看嵌入的投影,并查看它们是如何聚类的。损失和准确性等指标也可以可视化。可视化有助于更轻松地理解网络。TensorBoard 可以通过简单的用户界面完成所有这些工作,而无需做太多工作。

边缘设备

TensorFlow 生态系统还具有用于在移动和嵌入式设备上部署 ML 模型的特殊工具TensorFlow Lite 转换将 ML 模型转换为更小、压缩、易于处理的格式,可在移动和嵌入式芯片中进行处理。我们将在后面的章节中了解是什么让 TFLite 强大起来。

基于浏览器的模型训练和部署

TensorFlow.js 用于在浏览器上训练和部署模型。它提供了工具,可以轻松地将现有 ML 模型转换为 TensorFlow.js,以将它们托管在 Web 应用程序上。它能够在 Web 应用程序中提取相同的性能,而不会出现任何下降。我们将在后面的章节中研究 TensorFlow.js 的工作原理。

分布式学习

分布式学习是通过 TensorFlow Federated(TFF) 完成的。借助 TFF,开发人员可以构建在智能手机、嵌入式设备、边缘设备等上运行的去中心化应用程序。它提供数据安全和隐私。例如,如果智能键盘应用程序使用 ML 模型,则通常会将数据发送到服务器,并在服务器上完成训练。这侵犯了击键等数据和密码等重要信息的隐私。因此,在服务器上对模型进行预训练,并使用设备数据在设备上进行额外训练的联合方法有助于维护隐私。

预训练模型

TensorFlow 生态系统在 TensorFlow Hub 中包含许多预训练模型。使用迁移学习,用户可以获得高级和复杂模型的预训练权重和架构,这些模型只需要针对特定任务进行微调。使用 TensorFlow Hub 可以轻松访问预训练模型并将其实施到任何项目中。

不同的 TensorFlow 生态系统

TensorFlow 生态系统有 4 个扩展,具有不同的功能和用途。

什么是TF Core?

TF Core 是一种特殊类型的 TensorFlow,面向*研究人员和开发人员,他们自定义模型的每个部分,并要求完全控制所有变量。它是一个低级 API,比高级 API Keras 提供更多的控制权。在构建高级 API 中不可用的非常规架构或构建自定义丢失和激活层时,它非常有用。它广泛用于科学和研究领域。

TFX系列

TensorFlow 生态系统还使用 TensorFlow Extended(TFX) 将我们的模型推向生产。它提供生产管道和组件,以帮助生产和可扩展性。各种库和组件有助于生产的所有部分。

TF精简版

TFLite 用于在较小的设备中部署 ML 模型,同时保持隐私和安全性。TFLite 解决了优化模型的 5 个关键约束,

  • 延迟:无往返服务器。
  • 隐私:个人数据不会离开设备。
  • 连接性:无需互联网。
  • 减小尺寸:更小的模型和二进制大小。
  • 功耗:高效接口,无需网络连接。 TFLite 支持多个设备平台不同的编程语言。它通过加速硬件和优化的模型性能来保持高性能。

TensorFlow.js

TensorFlow.js 使 Web 应用程序能够托管 ML 模型。这是通过利用 WebGL 的强大功能在 GPU 上执行快速矩阵运算来实现的。TensroFlow.js 可以

  • 浏览器中开发机器学习模型,允许在 Web 应用程序中交互式和实时地应用机器学习。例如,您的网络摄像头可以用作玩吃豆人游戏的控制器,如图所示。
  • 在浏览器中训练和部署机器学习模型,无需服务器或云基础架构
  • 在浏览器中运行现有的 TensorFlow 模型,允许在客户端部署机器学习模型。
  • 使用来自 TensorFlow.js 模型库的预训练模型,这是一组可在浏览器中轻松使用的预训练模型
  • 它提供了将现有模型转换为 TensorFlow.js 所需格式的工具。

结论

  • TensorFlow 是最受欢迎的深度学习框架之一。
  • 它具有多种工具和功能来构建和训练模型。
  • TFX 在生产环境中用于构建管道以缩放模型。
  • 它提供了使用 TensorBoard 进行模型可视化的工具。
  • TensorFlow 模型易于扩展,并且可以包含将其投入生产的工具。
  • TensorFlow 支持将模型转换为各种边缘和移动设备。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

新华

感谢打赏,我会继续努力原创。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值