目录
在本系列文章中,我们将引导您完成将CI/CD应用于AI任务的过程。您最终会得到满足Google MLOps 成熟度模型2级要求的功能管道。我们假设您对Python、Deep Learning、Docker、DevOps和Flask有一定的了解。
在上一篇文章中,我们简要介绍了机器学习(ML)背景下的CI/CD。在本节中,我们将为ML管道设置环境。
Git存储库
该项目将包括六个强制性信息库——数据集,DataCommit,CodeCommit,单元测试,PredictionAPI,部署——以及一个“额外的”,接口。它们显示在下图中的红色框中。
- 该数据集存储库包含了用于火车或更新型号的预处理的数据集(S)。每当管道检测到此存储库中的更改时,它将触发持续训练步骤。
- 该DataCommit库包含允许管道触发代码连续训练,每当新的数据推。
- 该CodeCommit库包含从无到有训练模型,支持代码的持续集成。
- 该单元测试库包含使管道以验证模型是在测试注册表中可用的代码,然后对它运行测试。
- 该PredictionAPI库包含这是负责运行预测服务本身的代码。它加载生产注册表中可用的模型并通过API公开它。
- 在部署存储库包含副本从测试注册表生产注册表模型(一旦模型已经成功通过测试),然后逐渐加载新的模式来预测API实例零停机时间的代码。
- 该接口库包含一个非常基本的Flask的Web界面,使用API通信,以支持预测的请求。
要访问上述存储库,请在您的计算机上创建一个项目文件夹,从该文件夹打开一个终端窗口,然后运行:
git clone https://github.com/sergiovirahonda/AutomaticTraining-Dataset.git
git clone https://github.com/sergiovirahonda/AutomaticTraining-DataCommit.git
git clone https://github.com/sergiovirahonda/AutomaticTraining-CodeCommit.git
git clone https://github.com/sergiovirahonda/AutomaticTraining-UnitTesting.git
git clone https://github.com/sergiovirahonda/AutomaticTraining-PredictionAPI.git
git clone https://github.com/sergiovirahonda/AutomaticTraining-Deployment.git
git clone https://github.com/sergiovirahonda/AutomaticTraining-Interface.git
谷歌云平台
注意:您可以使用Google以外的云提供商。在这种情况下,您需要遵循该提供商的程序。
对于Google云平台(GCP):
- 创建一个Google Cloud Platform 帐户。
- 在Google Cloud Platform上选择或创建一个项目。我们创建了一个新项目并将其命名为“AutomaticTrainingCICD”。尝试执行相同操作,然后在完成本教程后删除整个项目以避免产生费用。
- 检查计费是否已启用。
- 启用Google Kubernetes Engine、Compute Engine和Container Registry API。
- 安装并初始化Google Cloud SDK——允许您与GCP服务交互的终端包。
- 在GCS上创建将用作我们的模型注册表的存储桶:
gsutil mb -l us-central1 gs://automatictrainingcicd-aiplatform
Docker
要在本地机器上安装Docker,请按照本指南中的说明进行操作。
下一步
我们的环境现在已为ML管道做好准备。是时候进入实际代码了。在下一篇文章中,我们将实现自动训练。敬请关注!
https://www.codeproject.com/Articles/5301645/Setting-Up-GitHub-Docker-and-Google-Cloud-Platform