(二)为自动化MLOps设置GitHub、Docker和Google Cloud Platform

目录

Git存储库

谷歌云平台

Docker

下一步


在本系列文章中,我们将引导您完成将CI/CD应用于AI任务的过程。您最终会得到满足Google MLOps 成熟度模型2级要求的功能管道。我们假设您对PythonDeep LearningDockerDevOpsFlask有一定的了解。

上一篇文章中,我们简要介绍了机器学习(ML)背景下的CI/CD。在本节中,我们将为ML管道设置环境。

Git存储库

该项目将包括六个强制性信息库——数据集DataCommitCodeCommit单元测试PredictionAPI部署——以及一个“额外的”,接口。它们显示在下图中的红色框中。

  • 数据集存储库包含了用于火车或更新型号的预处理的数据集(S)。每当管道检测到此存储库中的更改时,它将触发持续训练步骤。
  • DataCommit库包含允许管道触发代码连续训练,每当新的数据推。
  • CodeCommit库包含从无到有训练模型,支持代码的持续集成
  • 单元测试库包含使管道以验证模型是在测试注册表中可用的代码,然后对它运行测试。
  • PredictionAPI库包含这是负责运行预测服务本身的代码。它加载生产注册表中可用的模型并通过API公开它。
  • 部署存储库包含副本从测试注册表生产注册表模型(一旦模型已经成功通过测试),然后逐渐加载新的模式来预测API实例零停机时间的代码。
  • 接口库包含一个非常基本的Flask的Web界面,使用API通信,以支持预测的请求。

要访问上述存储库,请在您的计算机上创建一个项目文件夹,从该文件夹打开一个终端窗口,然后运行:

git clone https://github.com/sergiovirahonda/AutomaticTraining-Dataset.git
git clone https://github.com/sergiovirahonda/AutomaticTraining-DataCommit.git
git clone https://github.com/sergiovirahonda/AutomaticTraining-CodeCommit.git
git clone https://github.com/sergiovirahonda/AutomaticTraining-UnitTesting.git
git clone https://github.com/sergiovirahonda/AutomaticTraining-PredictionAPI.git
git clone https://github.com/sergiovirahonda/AutomaticTraining-Deployment.git
git clone https://github.com/sergiovirahonda/AutomaticTraining-Interface.git 

谷歌云平台

注意:您可以使用Google以外的云提供商。在这种情况下,您需要遵循该提供商的程序。

对于Google云平台(GCP)

gsutil mb -l us-central1 gs://automatictrainingcicd-aiplatform

Docker

要在本地机器上安装Docker,请按照本指南中的说明进行操作。

下一步

我们的环境现在已为ML管道做好准备。是时候进入实际代码了。在下一篇文章中,我们将实现自动训练。敬请关注!

https://www.codeproject.com/Articles/5301645/Setting-Up-GitHub-Docker-and-Google-Cloud-Platform

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值